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From a long view of the history of mankind—seen from, say, 

10,000 years from now—there can be little doubt that the 

most significant event of the 19th century will be judged as 

Maxwell’s discovery of the laws of electrodynamics. The Amer

ican Civil War will pale into provincial insignificance in com

parison with this important scientific event of the same decade.

Richard P. Feynman
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KEY TO SYMBOLS

Roman alphabets

A : Magnetic vector potential

A* : Electric vector potential defined with D

A  : Column m atrix containing the degrees of freedom corresponding to A 

B : Magnetic induction

B : “Damping” matrix; related to conductivity a

B : “Damping” m atrix before imposing the essential boundary condition

C : A space containing all the complex numbers

C : Capacitance

D : Electric induction

|  d | : Unknown coefficients in the Finite Element formulation

E : Electric field

l̂, e2, £3

: Unit basis vectors in Cartesian co-ordinate axes 

F : Force

f : A general function or force per unit volume

/  : Frequency ( /  =  u//(27t))

Qb : Energy associated with the “damping” term in the transient problem

Qf : Energy associated with the “force” term in the transient problem

Gk '• Energy associated with the “stiffness” term in the transient problem
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Qm '■ Energy associated with the “mass” term in the transient problem

Qfa : Energy associated with the “force” term in the static problem

Ok* '■ Energy associated with the “stiffness” term in the static problem

Gttiq - Energy associated with the “mass” term in the static problem

Gb '• Energy associated with the “damping” term  in the time-harmonic problem

G} : Energy associated with the “force” term  in the time-harmonic problem

Gk '■ Energy associated with the “stiffness” term  in the time-harmonic problem

Gm ■ Energy associated with the “mass” term in the time-harmonic problem

H  : Magnetic field

7ik : Sobolev space of functions that are square integrable upto kth order partial derivatives

H m : Homogeneous part of the magnetic field H  (i.e., with J /  =  0)

H , : Particular part of the magnetic field H  (i.e., with J /  ^  0)

I  : Current

i : Equal to y /—l

J /  : Volumetric free-current density, induced by electric field E

J a : Applied free-current volume density

K  : “Stiffness” matrix; related to permeability fi

1C : “Stiffness” m atrix before imposing the essential boundary condition

Ka : Applied free-current surface density

K / : Induced free-current surface density

£  : A curve

L : Inductance

L 2 : Hilbert space of square integrable functions (=  TiP)
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M : Magnetization vector

an : Mutual induction.

M : “Mass” matrix; related to permittivity e.

M : “Mass” matrix before imposing the essential boundary condition

x : Number of nodes in the finite element mesh

N : Weighting function

N : A matrix of the basis functions corresponding to A and ip

N a : A matrix of the basis functions corresponding to A

: A matrix of the basis functions corresponding to ip

Ni : The i th component of the weighting function

nA : Number of nodes at which A has to be determined

Tiifj : Number of nodes at which ip has to be determined

n : Unit normal

V : Power

VE : Power due to the displacement current

V h : Power due to the magnetic field

V j : Power due to the electric current

P : Electric polarization

P : Machine precision (e.g., single, double, etc)

1> : Penalty parameter for the Coulomb gauge

Q : Dimensionless parameter

R : A space containing all the real numbers

R : Resistance
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Th : Finite element triangulation

T  : Electric vector potential defined with J /

t : A unit tangent vector

u : The U-field used to define the algebraic gauge 

Va '■ Space of weighting functions corresponding to the A potential

(Transient problem)

Vaq '■ Space of weighting functions corresponding to the A potential

(Static problem)

Va ■ Space of weighting functions corresponding to the A potential

(Time-harmonic problem)

Vy, : Space of weighting functions corresponding to the ip potential

(Transient problem)

V^0 : Space of weighting functions corresponding to the ip potential

(Static problem)

Vy, : Space of weighting functions corresponding to the ip potential

(Time-harmonic problem)

V  : Voltage

v : Velocity of the electromagnetic wave

W  : Weighting function for Ampere’s law and the time integrated continuity 

equation combined (Transient and static problem)

W  : Weighting function for Ampere’s law and the time integrated continuity 

equation combined (Time-harmonic problem) 

w : The field used to define the algebraic gauge

xii
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: Weighting function for Ampere’s law

Wj, : Weighting function for the time integrated continuity equation

x  : A point in space R3

x' : A point in space R3

Z  : Impedance

Greek alphabets

a x : Numerical scaling factor for length

a£pt : Optimal (least condition number) numerical scaling factor for length

: The part of the boundary dQ on which (H  x n)Q is specified (Transient problem)

: The part of the boundary dQ on which Aa is specified (Transient problem)

r h^0 ■ The part of the boundary dQ on which (Ho x n)a is specified (Static problem)

V9Aq : The part of the boundary dQ on which Aao is specified (Static problem) 

r \ Ar : The part of the boundary dQ on which (Hor x n)a is specified 

(Time-harmonic problem) 

r ffAr : The part of the boundary dQ on which Aor is specified 

(Time-harmonic problem) 

r hA. : The part of the boundary dQ. on which (Hoi x ii)0 is specified 

(Time-harmonic problem)

: The part of the boundary dQ on which A ai is specified 

(Time-harmonic problem)
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: The paxt of the boundaxy d(Q  \  ficond) on which +  J /o j x is specified

(Static problem)

: The part of the boundary d ( Q \  flcond) on. which is specified (Static problem)

f'/itffr The part of the boundary dfl on which  ̂̂  uj 13j +  J /r)  X A) a is specified

(Time-harmonic problem) 

r ^ r : The part of the boundary dCl on which 'ipar is specified (Time-harmonic problem) 

f  hipj The part of the boundary 511 on which +  J / J  x n ) a is specified

(Time-harmonic problem) 

r w . : The paxt of the boundaxy dQ on which if)ai is specified (Time-harmonic problem) 

To : Combined potential for the static problem 

8 : Skin depth

8ij : Kronecker delta. 8{j =  0 if i ^  j ,  and 8u =  1

eo : Perm ittivity of free space

e : Perm ittivity of a material

£ijk : Permutation symbol

A : Wavelength of the electromagnetic wave

fj.o : Permeability of free space

p. : Permeability of a material

El : Combined potential, i.e., includes potentials if) and A  

n0 : Combined potential for the static problem

w  : An integer, i.e., belongs to the set {1,2,3, • • •}

pa : Applied volume free-chaxge density
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Pa. 0 Applied volume ffee-charge density at t =  0.

Pf : Induced volume ffee-charge density (due to the electric field)

PfO ■ Induced volume ffee-charge density at t =  0.

a : Conductivity of a material

Applied surface free-charge density

*/ : Induced surface free-charge density

T Machine base (e.g., binary, octal, etc)

4> '■Electric scalar potential

r  ■■Magnetic scalar potential defined with A*

<f>m : Total magnetic scalar potential

if) : Time-integrated electric scalar potential

“Pm. Reduced scalar potential

if) : Column matrix containing the degrees of freedom corresponding to ip

q Volume (domain of computation)

Q : Magnetic scalar potential

cond• Domain of the conductors inside Q, where a  ^  0

: Volume in which pa is imposed

dQ : Boundary of Q (a closed surface)

dQ&a: Part of dQ on which cra is imposed

dQ : Infinitesimal volume element in volumetric integration

u) : Angular frequency ( cj =  2irf)

List of operators and other symbols 

< * > : First time-derivative of <  >
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< ** > : Second time-derivative of <  >

< " >  : Indicates < >  is a complex quantity

< “>* : Indicates a complex conjugate of < ”>

< > r : Is the real part of < ">

< > i  : Is the imaginary part of < “ >

< >o : Indicates < > is a independent of time t

< >a : Indicates < >  is an applied (specified) quantity that is known

cos >  . indicates < > is unrationalized CGS units

gbn > . indicates < > is generalized units

> : Indicates < > for linear-isotropic materials

rcgs <  . indicates < >  is rationalized CG S  units

SI <  > : Indicates < >  is S I  units

< l ^  : Indicates < > is known, i.e., a prescribed in the problem
M

< >  : Indicates < > is unknown, and hence, to be computed

curl < > : Curl of vector <  >

div < > : Divergence of vector < >

grad <  > : Gradient of < >

: Dimensional multiplicative factor for converting < > from the rationalized 

C GS unit system to the generalized unit system 

a <:> : Non-dimensional multiplicative factor for converting a numerical value

< > from the rationalized CG S  unit system to the generalized unit system
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COMPUTER-AIDED ENGINEERING OF 
ADVANCED MULTILAYER CERAMIC CAPACITORS

By

Vinay Srinivas 

May, 1996

Chairman: Loc Vu-Quoc
Major Department: Aerospace Engineering, Mechanics, and Engineering Science

The objective of this work is to analyze advanced Multi-Layer Ceramic Ca

pacitors (MLCCs) using the Finite Element (FE) method. The focus is to study the 

behavior of the capacitor with changing frequency of excitation. In this work, the 

solution to the FE problem is used to compute the lumped circuit parameters, i.e., 

the capacitance C, resistance R, and the inductance L, for a range of frequencies.

We introduce a new multiple-scale technique to model electromagnetic sys

tems. We non-dimensionalize and scale the Maxwell equations to a new generalized 

system of units. This decreases the condition number of the matrices in the FE 

solution, and we thereby reduce the errors significantly. The scaling parameter is 

decided by the geometry and material properties of the components in the capacitor. 

The multiple-scale technique permits a change in the scaling parameter, and hence, 

is easily adapted to components with a variety of geometrical shapes and material 

properties.

xvii
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We introduce two algorithms to efficiently analyze the behavior of a capac

itor with changing frequency: The low frequency (much below the self-resonant 

frequency (s r f ) of the capacitor) algorithm separates the effect of the electric and 

magnetic fields and reduces the computational effort required to solve the FE prob

lem, whereas, the high frequency (close to, or above sr f )  algorithm couples the 

effect between the electric and the magnetic fields. The advanced MLCCs devel

oped by Ngo [1990] are miniature in size with an intricate network of electrodes. We 

use these algorithms in conjunction with the multiple scale technique to effectively 

determine the small values of R, L , and C in MLCCs.

We develop a new FE code that incorporates the multiple-scale technique in 

conjunction with the low and high frequency algorithms. The code includes routines 

to compute the lumped parameters (i.e., the R, L, C ) from the FE solution (poten

tials A and ip). Special mesh generation routines are also developed to accurately 

describe the complex geometry of the capacitor.

FE analysis used in this work provides a significant improvement over the 

circuit models used in the past: The capacitance C is now accurately computed as 

opposed to being estimated from experimental values. The capacitance C computed 

using FE analysis for a 10fiFarad MLCC developed by Ngo [1990] shows a 20% 

difference from the experimental value. This difference is attributed to changes in 

the geometry and the material properties during manufacturing. Unlike a linear 

distribution of current assumed in the circuit model proposed by Ngo [1992], we 

compute an accurate distribution of the current in the electrodes. As a consequence, 

the parasitic parameters R  and L computed in this work using FE analysis are 

smaller than those computed by the circuit model. The proposed methodology 

and computer implementation can be applied to design and analyze other passive 

electromagnetic devices.

xviii
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CHAPTER 1 
INTRODUCTION

Fastest-growing sector of the capacitor industry are surface-mount capacitors 

that are used in computers and telecommunication equipment This high-tech sector 

of the capacitor industry constitutes approximately 33% of the $14 billion capacitor 

market, out of which $7 billion of capacitors are used by Japan. The demand for 

these surface-mount capacitors is growing at a rate of 15% a year. United States 

based capacitor manufacturers include AVX corporation, Vishay Intertechnology, 

and KEMET. These three manufactures have established themselves in the man

ufacture of surface-mount capacitors: AVX corporation has 17% ($683 million), 

Vishay Intertechnology has 13% ($517 million), and KEMET has 11% ($455 mil

lion) of the $4 billion global surface-mount capacitor market. AVX corporation is 

the second-largest manufacturer in the world of surface-mount capacitors, next to 

only Japan’s Murata. DeFrancesco [1996] estimates that surface-mount capacitors 

would account for 20% of capacitor sales by the year 2000.

Multilayer Ceramic Capacitors (MLCCs) is a surface-mount capacitor that has 

seen an annual growth rate of 20% to 25% over the past 20 years. These capacitors 

are used in a variety of applications ranging from house-hold devices to satellites. 

A present trend in the design of electromagnetic devices is to miniaturize its com

ponents. As a consequence, most modem electromagnetic devices have a complex 

geometry and nonlinear material properties. An accurate computer model of these 

devices is crucial to reduce their cost and to improve their design. In recent years, 

Finite Element (FE) analysis has become a popular tool to design and analyze these

1
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2

devices.1 Simplicity in meshing complex geometries, better numerical accuracy, ever 

increasing number of available FE electromagnetic software, and increased computer 

resources have contributed to its success.

1.1. MultiLayer Ceramic Capacitors (MLCCs)

MLCCs have up to ten times the capacitance density of state of the art capac

itors. Typically, a 10 f i f  MLCC is packaged in less than 0.15 cubic inch. The elec

trical performance of the capacitor is characterized by its impedance as a function of 

frequency. High-quality MLCCs are expected to have their equivalent series induc

tance (esl) in the order of picohenries. To improve the high-frequency performance 

of MLCCs, an advanced multilayer m atrix capacitor geometry was introduced by 

Ngo [1990]. These advanced MLCCs consists of alternate electrodes with “positive” 

and “negative” polarity separated by dielectric sheets; see Figure 7.1 on page 140. 

These MLCCs are composed of cells, which have a footprint of 0.635cm x 0.635cm. 

The electrodes are 1.5f im thick, and the dielectric is 15pm  thick. The positive 

electrodes axe connected by positive vias. A positive via extends through holes 

in the dielectric layer and insulatingly through the negative electrodes. Similarly, 

we have negative vias connecting the negative electrodes. Unlike the conventional 

MLCC, these advanced MLCCs have terminations distributed on all four sides of 

the electrode, and therefore have lower equivalent series resistance (esr) and lower 

equivalent series inductance (esl). The esr and esl degrade the performance of the 

capacitor beyond the self-resonant frequency. However, low values of esr and esl, 

combined with high capacitance, increase the self-resonant frequency (sr f )  and im

proves the performance of the advanced MLCCs (Ngo [1992]). The MLCC shown

1 FE analysis has been used to model a  variety of electromagnetic devices, e.g., electrical m a
chines (Brauer, Larkin, MacNeal and Ruehl [1991]), semi-conductors (Barnes and Lomax [1977]), 
and piezoelectric devices (Lerch [1990]).
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in Figure 1.1 has 14 pairs of electrodes along the thickness, and 4 x 4  cells along 

the width of the capacitor; the figure is not drawn to scale. A detailed description 

of the complicated geometry of an advanced MLCC is given in Chapter 7.

1.2. Research Objectives

Prymak and Martin [1989] and others suggest that simple formulae such as 

those in Grover [1973] cannot be used for unconventional electrode geometries. How

ever, circuit models have been developed by Ngo [1992] to simulate the behavior of 

the advanced MLCCs at low frequencies (in the order of megahertz). Figure 1.2 

shows a single cell in a capacitor. The MLCC in Figure 1.1 is constructed by ar

ranging these single cells in a novel architecture. The circuit model for the entire 

capacitor is constructed by connecting the equivalent circuits for all the 4 x 4  cells to

gether. Discrepancies remain between the simulation and the experimental results. 

Anand [1993] attributes these discrepancies to a need for a better approximation to 

the current path and its distribution in the electrodes.

The objective of this work is to analyze MLCCs using the Finite Element (FE) 

method. The focus is on advanced MLCCs designed by Ngo [1990]. We compute 

the lumped parameters, i.e., the capacitance C,  resistance R, and the inductance 

L, for a range of frequencies. These lumped parameters are then used to compute 

the esr, esl and s r f  of the MLCC. We employ a coupled formulation to compute 

the interaction between the electric and magnetic fields. We study the distribution 

of current inside the electrodes of the MLCC. We compare the FE solution to the 

circuit models. The formulation, the implementation, and the subsequent results 

demonstrate the efficacy of FE analysis and establishes a systematic methodology 

to design and analyze advanced electromagnetic components.
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Figure 1.1. A 10 y. Farad advanced Multi Layer Ceramic Capacitor 
(MLCC) proposed by Ngo [1990]. The figure is not drawn to scale. 
The footprint of the capacitor is approximately 2.54 x 10-2 m  x 2.54 x 
10-2 m, and the thickness (height) is approximately 4.5 x 10-4 m.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

5

Dielectric
Positive Electrode

Negative Via]

Positive Via 

Negative Electrode
0.635 cm

Figure 1.2. A typical single cell in the interior of a MLCC stack.

1.3. Overview

Use of FE analysis to model electromagnetic components is well established, 

see e.g., Silvester and Ferrari [1983]. FE analysis begins with a description of the 

problem geometry and material characteristics. The boundary conditions and the 

source for the electric and magnetic fields are specified. The sources are prescribed 

voltages and current densities. The region (i.e., a volume containing the electromag

netic component) of interest is then discretized in space into a mesh, and Maxwell 

equations are solved in a “weak” sense. Static and time-harmonic analysis is most 

popular; transient analysis is rarely attempted. The principle of virtual power for 

electromagnetics (Maugin [1980]) is the basis for the approximation. A detailed
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Definition of potentials 
Gauge condition

Galerkin method

FE approximation

Calculus of Variations

Solution
Postprocessing

weak form

Discrete weak form

Maxwell equations 
in terms of fields

2nd order PDEs 
in terms of potentials

Matrix equations

Figure 1.3. The typical Finite Element (FE) procedure to solve 
Maxwell equations.

discussion of the FE procedure given in Figure 1.3 can be found in Hughes [1987] 

and Zienkiewicz and Taylor [1989].

The present formulation uses the magnetic vector potential A together with 

the time-integrated scalar potential ip (MacNeal, Brauer and Coppolino [1990]). 

The partial differential equations (PDEs) are coupled, i.e., the terms related to the 

electric field are coupled with the terms related to the magnetic fields. Maxwell 

equations in terms of the field quantities and the potentials are explained in Chap-
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ter 2. The discussion on the gauge condition explains the need for a gauge and 

the reasons for the choice of the Coulomb gauge in the present work. Chapter 3 

transcribes the partial differential equations (PDEs) in Chapter 2 to a weak form 

via Galerkin projection. In Chapter 4, the weak form is discretized using first-order 

Lagrange isoparametric 8-noded brick elements. The matrix equations are derived. 

The entire procedure is repeated for electrostatic, magnetostatic, transient, and 

time-harmonic problems. The Coulomb gauge is implemented in the matrix equa

tions via a penalty method. The use of selective reduced integration and the choice 

of a penalty parameter are explained in Sections 4.1.3 and 4.1.3.1, respectively.

In Chapter 5, a lumped parameter model for the MLCC is presented. The 

electric and magnetic field quantities of the continuum problem obtained via the 

FE solution are related to the lumped parameters of the circuit model, namely, the 

capacitance, the resistance and the inductance. The voltage and the current are 

related to the field quantities. These relations are derived for the static, transient, 

and time-harmonic solutions. The focus is on problems with an independent voltage 

source. A relation between the lumped parameters and the FE matrices is presented 

at the end of Chapter 5.

1.4. Contributions and Results

We introduce a new multiple-scale technique in Chapter 6 to transform Maxwell 

equations from the conventional S I  unit system to the generalized unit system. The 

technique requires a set of scaling parameters that are determined by the physics 

of the electromagnetic problem. Suitable choice of the scaling parameters allows an 

effective interaction between different physical processes in the device. Previously 

intractable problems can be effectively solved by scaling. Scaling proves to be par

ticularly useful to model electromagnetic devices having a complex geometry and a
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mixture of regions of finite conductivity and zero conductivity. We demonstrate the 

efficacy of this scaling technique in a Finite Element(FE) model for a single cell of an 

advanced Multi Layer Ceramic capacitor. Scaling, motivated by the physics of the 

problem, decreases the condition2 number of the matrices in the FE solution, and 

reduces the errors significantly: For example, the condition number of the solution 

to a single cell in a capacitor (in Figure 1.4(a)) with an applied voltage at the left 

end of the top electrode and the right end of the bottom electrode can be improved 

from 0 ( 1O20) in the S I  unit system to 0(1O13) in the optimal generalized, system 

unit system. The relative error3 improves from O(10~2)% to (D( 10~u )%. A detailed 

study on the effects of scaling and other examples are presented in Chapter 8 . The 

choice of the scaling parameter depends on the electromagnetic properties of the 

materials, and the frequency of excitation. The condition number and the relative 

errors also depend on the boundary conditions.

We introduce Algorithm 9.1 and Algorithm 9.2 to analyze the behavior of 

the capacitor with the change in frequency. These two algorithms in conjunction 

with the multiple-scale technique is implemented on the computer using FEAP4 and 

MODULEF .5 Figure 1.5 outlines the computer implementation. Static, transient,

2 Condition number is defined using the 2-norm, i.e., the ratio of the largest to the smallest 
singular (eigen) value.

3 Here, the numerical accuracy of the solution to a  linear system of equations K d — f  is 
estimated by the relative error

II K d  -  /  ||a
II f h  '

where K is a  square m atrix and /  is the right-hand side column vector. The computed solution is 
represented by column vector d. The symbol “|| • ||” indicates a 2-norm; see Golub and van Loan 
[1987] for details.

4 Finite Element Analysis Program (FEAP) was originally developed a t the University of 
California, Berkeley. The structure of FEAP ( © R.L. Taylor) and its macro command language 
are described in Chapter 15 of Zienkiewicz and Taylor [1989].

5 MODUle Element Finis (MODULEF) club was founded by Institu t National de Recherche 
en Informatique et an Automatique (INRIA), France, in 1974. MODULEF is a general purpose 
finite element library developed by the MODULEF club. See Bemadou, George, Hassim, Joly, 
Laug, Perronet, Saltel, Steer, Vanberborck and Vidrascu [1986] for further details regarding its
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and time-harmonic solutions for Maxwell equations are implemented. Sophisticated 

mesh-generation routines axe developed to mesh the the intricate network of elec

trodes and vias in the complicated three-dimensional structure of the advanced

MLCC.

A solution at zero frequency, i.e., an electrostatic solution, to model the entire 

capacitor (i.e., 4 x 4 x 27 =  432 cells) is presented in Chapter 7. A 20% difference 

is observed between the FE solution and the experimental values of capacitance C. 

This difference is attributed to changes in the geometry and the material properties 

during manufacturing.

Time-harmonic analysis increases the size of the matrix equations involved in 

the FE solution. The available computer resources limit the time-harmonic analysis 

to just a few (2 x 2 x 3 =  12) cells. In Chapter 9, we compare the FE solution 

for a few cells with its circuit model proposed by Ngo [1992]. Unlike the circuit 

model, FE analysis provides a detailed picture of the distribution of current in the 

electrodes. We observe that the distribution of current is not linear. The lumped 

parameters R  and L computed using FE analysis is smaller than those predicted by 

Ngo [1992] Js circuit model.

The resistance, inductance, and capacitance for a MLCC are obtained by as

suming simple linear isotropic constitutive relationships for the materials. However, 

high performance materials such as ferroelectric BaTiC>3 used in MLCCs require so

phisticated constitutive models to account for the change in material properties with 

temperature and orientation of the material. A new methodology based on semi

infinite optimization is introduced to obtain, for the first time, accurate constitutive 

models for ferroelectric material. Appendix B outlines the proposed methodology. 

In the future, these accurate models can be used in conjunction with the FE proce- 

program  structure and its use.
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dure to improve the accuracy of the solution.

The contents of the chapters in this dissertation axe summarized as follows. 

In Chapter 2, we introduce Maxwell equations. We derive a concise m athem ati

cal statement of an electromagnetic problem for devices with static, transient, and 

time-harmonic excitations . In Chapter 3, we explain the weak form for these elec

tromagnetic problems. The subsequent m atrix equations are derived in Chapter 4 

using first-order Lagrange isoparametric 8 -nodes brick elements. In Chapter 5, we 

outline the procedure to calculate the lumped parameters R, L, and C  from the FE 

solution (potentials A and ip). A brief discussion on the equivalent circuit model 

is also presented. In Chapter 6 , we propose the new multiple-scale technique, and 

explain the transformation from the S I  unit system to the generalized unit system. 

The features and advantages of the multiple-scale technique axe discussed.

The numerical results obtained using FE analysis for the capacitance C of 

the complete MLCC are shown in Chapter 7; the capacitance is calculated from a 

solution to an electrostatic problem. In Chapter 8 , we explore solutions to bench

mark time-dependent electromagnetic problems. The focus is on electromagnetic 

devices with time-harmonic excitations. The performance of solutions using the 

multiple-scale technique is evaluated. The frequency dependent characteristics of 

the cells inside the MLCC capacitor obtained using FE analysis axe compared to its 

equivalent circuit model in Chapter 9. The use of a circuit simulator to study the 

behavior of the circuit models is discussed in Appendix A.
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Figure 1.4. (a) A schematic of one cell in a MLCC. (Not drawn to 
scale.) The direction of the current flow is indicated by arrows, (b) 
Condition number vs. scaling parameter a a.
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MODULEF mesh:

NOPO binary data structure
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Figure 1.5. Computer implementation of FE procedure to solve 
Maxwell equations. The processors amccxx, rmccxx, and scabxx are 
used to generate a mesh for the capacitor. The processor feapxx is 
used to convert the MODULEF mesh data structure to the FEAP 
mesh data structure. The flow chart on the left-hand side is imple
mented in MODULEF; and the flow chart on the right-hand side is 
implemented in FEAP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 2 
PROBLEM STATEMENT

This chapter begins with Maxwell equations. Mathematical statements are derived 

for problems with static, transient, and time-harmonic excitations. In solutions to 

problems with passive electromagnetic devices, use of intermediate functions termed 

as electromagnetic potentials reduce the computational effort, and is often more 

convenient. This chapter discusses the relation between the field quantities and 

the pair of potentials A and ip, where A is the magnetic vector potential and ip 

the electric scalar potential. The mathematical statement of the electromagnetic 

problems axe expressed in terms of potentials A and ip. The use of these potentials 

requires gauge conditions to ensure an unique solution. The gauge of choice in this 

document is the Coulomb gauge. Some aspects of uniqueness are also discussed. 

Albeit much of the discussion in this chapter can be found in the current literature, 

this review is used to develop the ensuing finite element formulation.

2 .1 . Problem Statement using Electromagnetic Fields

In the 1870’s, Maxwell unified the theory of electricity and magnetism to 

explain the interaction between the different forces which lead to the unified Maxwell 

equations. These partial differential equations are a consequence of the Gauss’s law, 

the Ampere’s law, and the Faraday’s law. A comprehensive account of the history 

of electromagnetics can be found in Hammond [1981]. Electric and magnetic fields 

in an electromagnetic device are solutions to the Maxwell equations.

13
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2.1.1. Maxwell Equations in Terms of Fields

The governing partial differential equations (Maxwell equations) for electro

magnetic problems are as follows:

d B
Faraday’s law: —— bcurlE  = 0 ,  (2.1)

(/b

Gauss’s law for electric field: divD  — pf =  0 , (2.2)

dD
Ampere’s law: — —  +  curlH  — J /  =  J a , (2 .3 )

Gauss’s law for magnetic induction: div B =  0 , (2.4)

where the field quantities are the electric field E, the magnetic induction B, the 

electric induction D, and the magnetic field H. The quantities J /  and p} are the field 

induced free-current volume density and free-charge volume density, respectively. 

In some electromagnetic problems an applied free-current volume density J tt and 

an applied free-charge volume density pa are prescribed. The applied free-charge 

volume density pa is imposed as an additional constraint equation

Pf =  Pa in fiPa C n  . (2.5)

2.1.2. Constitutive Laws

The macroscopic behavior from the internal constitution of the material is de

scribed by constitutive laws. For the materials employed in MLCCs, the constitutive 

laws that relate D, H, and J /  to the field quantities E  and B are

D =  e0E +  P ( E )  , H  =  — B - M ( B )  , J f  = J / ( E )  , (2.6)
Po

where the polarization P  is a non-linear function of the electric field E, and the 

magnetization M  is a non-linear function of the magnetic induction B. Note that 

the above constitutive equations characterize the behavior of most materials used in
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Figure 2.1. A typical electromagnetic problem

electromagnetic devices. Historically, the field quantities E  and B are treated as the 

primary unknowns in an electromagnetic problem, i.e., all the other field quantities 

are calculated from E  and B.

The part of the volume Cl in which the current density J /  is not zero in 

the presence of a non-zero electric field E is characterized as a region of finite 

conductivity and is designated to be Clean* C  As the focus of the present work 

does not apply to superconductors, we designate the remaining volume (fi \  Qcond) 

to be the non-conductive region. Splitting the volume Cl into conductive and non- 

conductive regions is especially useful in solving for the initial conditions (2.14) and

(2.15) (see Section 2.1.5 below).
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2.1.3. Interface Conditions

Due to the abrupt change in the material behavior at the interface between two 

different materials, we find abrupt changes in the field quantities: The conditions 

at the interface between medium (i) and medium (j) can be shown to be (e.g., 

Wangsness [1986]) as follows.

Tangential component of E is continuous:

n x ( E ^ - E ^ )  =  0 .  (2.7)

Normal component of D is discontinuous by the amount of surface charge cr/ :

n * ( D ^ - D W )  =  af . (2.8)

Tangential component of H  is discontinuous by the amount of surface current K /:

n x  ( H ^  -  H « )  =  K f  . (2.9)

Normal component of B is continuous:

n ' ( B y ) - B W )  =  0 .  (2.10)

The unit normal vector n to the surface of discontinuity is directed away from 

medium (i) into medium (j). The induced field quantities are the free-current surface 

density K /  and the free-charge surface density a . However, in some electromag

netic problems, an applied free-current surface density K a and a free-charge surface 

density cra are prescribed. They are imposed as additional constraint equations

(2.11)

2.1.4. Boundary Conditions

The formulation to be presented in this document apply to the following pos

sibilities: (1) The domain ft is bounded, (2) ft is an unbounded region comprising of 

all space, and (3) ft is an unbounded region from which certain regions are excluded.
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2.1.4.1. Interior boundaries

For the boundaries that are close to “center” of the problem, we specify field 

quantities E and B. These interior boundaries are present only if we know the 

solution on the boundary a priori, e.g., if we exploit the symmetry in the problem.

2.1.4.2. Exterior boundaries

However, for an exact solution, we must also impose the Dirichlet or the Neu

mann boundary conditions at an infinite distance from the “center” of the problem 

as follows. The Dirichlet boundary conditions at infinity are

lim B(x, t) = 0
|x|~oo '
lim E(x, t) = 0Ixl—oo

» V f >  0 .  (2.12)

The Neumann boundary conditions at infinity are

<9H
lim ——(x, t) = lim curl H x n = 0

|x|—»oo dn  |x|-oo
5D

lim ——(x, t) = lim curl D x n = 0
|x|-oo dn  |x|-oo

V * > 0 .  (2.13)

In practice, we create an artificial boundary at a large finite distance from the 

“center" of the problem, thereby introducing errors in the solution. As this artifi

cial boundary is made more distant, the errors are reduced. Any outgoing wave is 

reflected by the boundary. For a Neumann boundary condition, the reflected (in

coming) wave is in phase with the incident (outgoing) wave, and conversely, for a 

Dirichlet boundary condition, the reflected wave is out of phase. See Remark 2.1  

for an overview of the methods to handle exterior boundary problems.

Remark 2.1. Typically, the domain of an electromagnetic problem is infinite. 

We require infinite number of elements to discretize an infinite domain. However, the 

present day computer resources are finite. This contradiction requires alternative
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procedures to deal with exterior regions (far from the “center” of the problem). 

Some of the popular methods axe explained in Emson [1988], and the most popular 

methods, the method of truncation and the use of infinite elements, are explained 

below.

The method of choice in this work is the method of truncation, where the finite 

element mesh is truncated at a finite distance away from the “center” of the problem. 

As the distance of the artificial boundary is increased we expect better accuracy. 

However, the success of such a method depends on the physics of the problem. 

Care should be taken for 2-dimensional problems, where the 2-dimensional assump

tion introduces sources at infinity, and hence, a field at infinity. For 3-dimensional 

problems, the mesh should be constructed to make the excluded region source-free. 

Incoming and outgoing electromagnetic waves play havoc at the artificial boundary. 

For example, in scattering problems, the artificial boundary should be constructed 

such that it does not reflect any waves (wave absorbing boundaries).

Another popular method to model the boundary is the use of infinite elements. 

The infinite elements are of two types. The first type maps the local co-ordinates 

of one set of nodes to infinity. The second type uses a singular decay function in 

the basis polynomials. This ensures that the potentials, and consequently, the field 

quantities decay to zero. The success of the infinite elements is problem dependent. 

Care must be exercised in the choice of the mapping functions and the decay func

tions. See Penman, Grieve and Wilson [1986], Imhoff, Meunier and Sabonnadiere 

[1990] and Gratkowski and Ziolkowski [1992] for application of infinite elements to 

electromagnetic problems. Yet another method is the use of the Boundary Integral 

Method (BEM) to model the artificial boundary coupled with the FE method for 

the interior volume. This method couples all the nodes at the boundary and sig

nificantly increases the bandwidth of the m atrix equation. The increase in the cost
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for solution may outweigh the increase in accuracy. Ramahi and M ittra [1991] and 

McDonald and Wexler [1972] use only the Boundary Integral Method for the entire 

problem. Ren, Bouillault, Razek and Verite [1988] presents a comparison of different 

boundary integral methods when coupled with finite elements in three dimensions. 

For complicated geometries such as the advanced multi-layer capacitors, the use of 

truncation to establish artificial boundaries appears to be most cost effective. We 

use the method of truncation, which is not necessarily better than the use of infinite 

elements, however, is simple enough to allow us to focus on the main objectives of 

this work. I

2.1.5. Initial Conditions

In addition to the boundary conditions, we must specify the field quantities at 

the instant that we begin solving the PDEs: Let E 0 be the electric field and Bo be 

the magnetic field at time t =  0. The solutions to an electrostatic and a magneto- 

static problems often serve as initial conditions to a time dependent electromagnetic 

problem. An electrostatic problem is with zero current inside the conductors, and 

hence, the electric field inside the conductors is zero. Therefore, the electrostatic 

equations that must be satisfied by Eo outside the conductive region are

curlE0 =  0  in (fi \  Slcond) ,
div D 0 — pfa = 0  in (fi \  f2 ,w ) ,

P/o = Pao \  Qctmd) n  f̂ po0 )
Pjo =  0 in (fi \  Dcond) \  ^p„0 >

(2.14)

where the subscript “0” indicates quantities at time t =  0. The applied free-charge 

density pa0 is specified in a non-conductive region. A magnetostatic problem is with
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time-independent magnetic field, i.e., the magnetic induction Bo must satisfy

(2.15)

See e.g., Stratton [1941] for details.

A typical electromagnetic problem involves calculating E, B, and pf (total of 

seven unknowns) by solving Maxwell equations (2.1) to (2.4) together with appropri

ate constitutive laws (2.6), boundary conditions (2.12) or (2.13), initial conditions 

(2.14) and (2.15), and constraints (2.5) and (2.11).

2.2. Problem Statement using Electromagnetic Potentials

Electromagnetic fields are often calculated by using intermediate functions 

which are called potentials. Some of these potentials reduce the number of un

knowns to be determined in the solution to Maxwell equations, thereby reducing 

the computational effort. Furthermore, potentials can be conveniently related to 

the circuit quantities. For example, in some problems with electromagnetic devices, 

the electric scalar potential (j) is the voltage in a circuit. Many different sets of 

potentials have been defined to solve electromagnetic problems; see e.g., Hammond 

[1982]. A set of potentials is only applicable to a particular kind of electromagnetic 

problem. This is due to the fact that many simplifying assumptions were made in 

order to define these potentials. The potentials most c o m m o n l y  used in electromag

netic problems and their respective simplifying assumptions are listed in Tables 2.1 

and 2.2. Note that the electromagnetic fields E and B can also be computed directly 

without calculating the potentials; see e.g., Bossavit [1989].

The most common potentials are the magnetic vector potential A and the 

electric scalar potential <f>. However, in the past few years the use of the magnetic
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Table 2.1. The potentials used in the formulation of electromagnetic 
problems. The assumptions required to simplify Maxwell equations 
are also listed.

Potentials Assumptions PDEs to be solved

B = :  curl A

IT  d XE =: -g ra d  <j> -  —  

Carpenter [1977, p. 1027]

None 1 T Tcurl H  — ---------J  /  = 0
dt 1

div D = p;

B = :  curl A

E = : - g r a d ^ - ^
5  dt dt

MacNeal et al. [1990]

None c u r l H -  J f  = 0  
dt f

divD =  pf

J /  = :  curlT  

H  = :  T  — grad 1?

Brown [1982, pp. 49-50]

a D
~dt < '

, 9Bcurl E -------—  =  0
dt

div B =  0

D =: —curl A*

H = : - «  - i A ‘ 

Stratton [1941]

P, = 0

linear-isotropic 

homogeneous material

dB
curl E -  —  = 0  

dt

divB = 0

E  =: —grad <f>

Hammond [1982, p. 107]

dB n
dt ~

J f  =  0

dt

div D =  pf

H  =: -g ra d  <j>m 

Hammond [1982, p. 107]

Albanese and Rubinacci [1990, p. 516]

^ = 0dt

J f  =  0

dD n
dt ~

div 5  =  0
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Table 2.2. The potentials used in the formulation of electromagnetic 
problems (continued).

Potentials Assumptions PDE’s to be solved

H  =: H 5 + H m

H m =: —grad ipm

H  1 w  Jn | x - x '  I3

Hammond [1982, p. 107]

Albanese and Rubinacci [1990, p. 516] 

Simkin and Trowbridge [1979]

dt

J f  known

® = 0
at

div H m =  0

B =  curl A

Hammond [1982, p. 107]

Albanese and Rubinacci [1990, p. 516] 

Simkin and Trowbridge [1979]

T T = «dt

J f  known 

dt

curl (H) =  J f

vector potential A together with the time-integrated scalar potential ip has gained 

popularity (MacNeal et al. [1990]). The main advantage of using A and ip is that the 

resulting FE matrices are symmetric and positive semi-definite. Hence, conventional 

numerical algorithms can be used to solve the resulting system of equations.

2.2.1. Maxwell Equations in Terms of Potentials

The formulation for electromagnetic problems presented here uses the time- 

integrated scalar potential ip and the magnetic vector potential A. The definition
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of the potentials

(2.16)

satisfy Faraday’s law (2.1) and Gauss’s law for magnetic induction (2.4) uniquely. 

The remaining two equations, i.e., Ampere’s law (2.3)

5D
— 4- curl H  -  J /  =  J a , 

and Gauss’s law for electric field (2.2)

div D — pf = 0  ,

are solved to determine the potentials A and ip. Therefore, all the quantities in 

left-hand side of the equations (2.3) and (2.2) must be represented in terms of the 

potentials A and ip.

To recapitulate, the PDEs to be solved for the electromagnetic problem for

mulated using potentials A  and ip axe

(2.17)

where all the expressions on the left-hand side can be represented in terms of 

potentials.6

2.2.2. Constitutive Laws

The field quantities H , D, and J / are related to the potentials defined in (2.16)

via the constitutive equation (2.6). The disadvantage in using these potentials in a

6 The field quantities H, D , and J /  are related to the potentials via the constitutive equation 
(2.6). Equation (2.30) is used to  represent pt in term s of the potentials. J a and are applied 
sources, i.e., prescribed quantities.
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numerical solution is the need to differentiate the potentials in order to determine 

the field quantities.

2.2.3. Boundary Conditions

2.2.3.1. Interior boundaries

For the boundaries that are close to “center” of the problem, we specify the 

potentials A and 0 . These interior boundaries are present only if we know the solu

tion on the boundary a priori, e.g., in the case of existing symmetry in the problem. 

Typically, in electrostatic problems, we specify the quantity 0q (which is equivalent 

to the voltage) on the interface between the conductive and non-conductive regions. 

In magnetostatic problems, we could impose the analytical solution for the potential 

Ao =  0  at the interface between the conductive and non-conductive regions.

2.2.3.2. Exterior boundaries

By definition the field quantities E and B, involve the derivatives of potentials 

A and 0 , a-nd hence, imposing (2.12) and (2.13) is equivalent to imposing linear 

constraint equations on the derivatives of A and 0 , and hence is not computation

ally efficient. Therefore we choose to impose the following boundary conditions: 

Dirichlet boundary conditions

lim A(x, t) = 0|x|-»oo v
lim 0 (x, t) = 0

|x|-*oo
V t >  0 , (2.18)

or the Neumann boundary conditions

n curl A x n  = 0
W  t > 0 . (2.19)

d A .  . , A
hm ——(x, t) = hm curl A x n  = 0

|x|-*oo an  ix|-.oo
Q t

lim ——(x, t) = lim grad 0  • n = 0  
|x|—»oo dn  |x|-oo 6
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In the limit as |x| —► oo the boimdary conditions (2.12) and (2.13) are equivalent 

to (2.18) and (2.19). In practice, it is preferred to impose the Neumann boundary 

conditions (2.19) at a laxge finite distance from the center of the problem.

2.2.4. Initial Conditions

Initial conditions comprise of the potentials (A 0, V’o) and their first-time deriva-
•  •  |

tive (AojV'o)- The potential Ao is a solution to (2.15), and the potential is a

solution to (2.14). Note that we have the electric field E to be zero inside the 

conductive region Slamd, and hence, a convenient choice is to set

(2 .20)

The remaining potentials Ao and ipo are chosen as follows. The initial condition 

assumes a steady magnetic induction B everywhere in Q, i.e,

5Bo _  o . dcurl A 0 _ 
dt dt

and hence, a convenient choice is

(2 .21)

As the field quantities at time t = 0 do not involve the scalar potential V’o, but only 

its time derivatives, we choose

(2 .22)

2.2.5. Typical Electromagnetic Problems

We present here a comprehensive statement for electromagnetic problems with 

static, transient, and time-harmonic excitations. Our focus is on passive electro

magnetic devices such as capacitors. Before we look at the complicated transient 

problem, we present a simpler static problem with the following assumptions:
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Assumption 2.1. The following assumptions are made to solve the electrostatic 

and magnetostatic problems:

1 . For the electrostatic problem, all the electromagnetic 
quantities are independent of time.

2. For the magnetostatic problem, the magnetic quantities 
are independent of time; and any applied current is di
vergence free, i.e.,

div J /0 =  0 . I

2.2.5.1. The electrostatic problems

We determine the electric scalar potential ipo, and consequently, the electric 

field E 0 inside a non-conductive region. W ith Assumption 2.1 we have (explained 

in Section 2.2.4) 7

• •  •  • •
ipo =  0  and ip0 =  0 , with ip0 =  ipao in ticond and ip0 ^  0 in Q \  Qcond ,

where ipao is the voltage applied to the conductors. Hence, we only need to solve

for the potential ipo in the non-conductive region f2 \  tlcond, he.,

(2.23)

• •
where D 0 is related to Eo =  —gradV’o, and hence ip0, via the constitutive law (2 .6 ). 

The symbol f)Poo denotes the volume in which a charge of applied charge volume 

density pa0 is prescribed. The boundary dQ, = : Th* U , where Tfĉ  is the part of

7 To emphasize the difference, the quantities that are independent of tim e t, have a subscript 
“0” .
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the boundary on which the Do • n field is specified, and T • is the remaining part of
9* 0• I

the boundary on which ipo is specified. In Chapter 5, the quantity rpo is defined to be 

the voltage. For the part of the boundary close to the “center” of the problem, we 

either specify the voltage by setting the value of tpa. on the boundary T • , and/or
9*o

the non-zero8 field (Do*n)a on the boundary . For part of the boundaries far 

from the “center” of the problem, we impose a Dirichlet boundary condition

V’o(x) =  0 ,

by specifying ip^ =  0 , and/or a Neumann boundary condition

g rad^0(x)*n =  0 ,

by specifying (D 0 *n)o =  0.

2.2.5.2. The magnetostatic problems

We determine the magnetic vector potential Ao, and consequently, the mag

netic induction Bo inside the region fi. For the magnetostatic problem, as explained 

in Section 2.2.47 we have

•  • •
A 0 =  0 and Ao =  0 , with A 0 ^  0 in .

We determine the potential Ao in the region ft as follows:

(2.24)

where Ho is related to Bo =  curl Ao, and hence Ao, via the constitutive law (2 .6 ). 

The boundary <9ft = : U r Silo, where is the part of the boundary on which

8 A non-zero Dao *h  is equivalent to specifying an surface free-charge density <ri0 ; see (2.11).
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the Ho x n field is specified, and r ffAo is the remaining part of the boundary on 

which Ao is specified. For the part of the boundary close to the “center” of the 

problem, we either specify the value of on the boundary , and/or the field 

non-zero (Ho x n)a on the boundary I \ Ao. For part of the boundary far from the 

“center” of the problem, we impose a Dirichlet boundary condition

A0(x) =  0

by specifying Aao =  0, and/or a Neumann boundary condition

curl A 0(x) x n =  0

by specifying (H 0 x n)a =  0 .

2.2.5.3. The transient problems

A convenient formulation is to eliminate pf in (2.17). This is done by dif

ferentiating (2.17)2 with respect to time, and replacing pf by using the continuity 

equation (2.28); see Remark 2.2 for details. The set of PDEs

(2.25)

which are used in the remainder of the present document, is equivalent to (2.17). 

Note that substituting (2.17)2 by (2.25)2 requires the satisfaction of (2.17)2 at time 

t =  0; which is included as an initial condition to the electromagnetic problem. In 

the transient problem stated below we determine the electric and magnetic field 

quantities for a prescribed distribution of current (specified by J a with appropriate 

boundary conditions. Note that the statement below does not permit a voltage to

d B
curlH  -  —  -  J f  = J a , 

3{divD }
 —------+  d iv J / =  - d iv J a ,
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be prescribed in the region fi.

Given ipo =  0, A0 =  0 , ipQ that satisfies (2.23) and A0 that satisfies
(2.24), find A(x, 4) and ip{x,t) for all x  G Q and 4 > 0, such that 
we satisfy (2.25)

c u r l H - ^ - J /  = J a

5{divD }
dt

+ div J  /  =  — div J a

with the volume constraint (2.5)

P f  =  Pa

the interface constraints (2 .1 1) 
K f  = K a

and the boundary conditions
A =  A0 

H x n  =  (H  x n)Q
iP =  1pa

, C/t A
9D
dt

>n

V x  E Q and 4 > 0 ,

V x 6  ft and 4 > 0 ,

in QPa C ,

on dQKa C Q , 
on d£laa C Q ,

on , 
on r* A ,

on ,

on r h* .

(2.26)

In (2.26) the field quantities H, D, and J /  are related to the potentials A and ip via

the constitutive equations (2.6). The boundary dQ, =: U where ThA is the

part of the boundary where the H x n  field is specified, and is the remaining

part of the boundary where the vector potential A is specified. Also, the boundary
d B

dQ = : Thi, U r g„, where is the part of the boundary where the +  J / J  *n

field is specified, and is the remaining part of the boundary where the time 

integrated scalar potential ip is specified. For the part of the boundary close to the 

“center” of the problem, we either specify the values Aa and ipa on the boundary, 

and/or the field (H  x n)a and • '̂or Par  ̂ boundary far
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from the “center” of the problem, we impose a  Dirichlet boundary condition

A(x) =  0 and ip (x ) =  0 

by specifying Aa =  0 and ipa =  0, and a Neumann boundary condition

curlA (x) x n = 0  and g rad ^ x )* !!  

by specifying (H  x n)a =  0  and +  J / j  =  °-

Remark 2.2. Differentiate (2.2) with respect to time t to obtain

a_(divD)_gg,
at at ( ’

However, using the continuity equation

dp,
-f. div [J/ +  J 0] =  0 , (2.28)

we can eliminate pf from (2.27) to get the time integrated continuity equation

5(divD)
dt

+  div [Jy +  J a] — 0 . (2.29)

Moreover, an expression for p} is obtained by integrating the continuity equation 

(2.28) with respect to time t :

Pf = Pjo -  [  div [J/ +  Jo] dt , (2.30)Jto

where to is the instant in time where we begin the analysis of the electromagnetic 

problem and pJ0 is the free charge density at time t0. I

2.2.5.4. The time-harmonic problems

In many practical electromagnetic problems, the driving forces, e.g., J a, p a , 

Aa, ipa, etc, are periodic sinusoidal functions of a particular frequency ui. As a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

31

result, the induced fields and potentials are also sinusoidal function of the same 

frequency uj. A convenient formulation for such problems is to represent all the 

quantities as time-harmonic functions (see Definition 2.1 below) of the frequency u. 

For a time-harmonic problem the potentials are

A(x, t )  := A0( x ) e ( ^  , (2 .3 1 )
^(x,<) := ^ 0( x ) e ^  .

Hence, we now only need to calculate the complex functions Ao and ipo that are 

independent of time t. An electromagnetic problem using these time harmonic rep

resentation is also called a quasi-static electromagnetic problem, which is formulated 

below.

Definition 2.1. A time-harmonic function / (x ,  i) : (1 x R+ —> C (where R+ 

denotes a set of positive real numbers) of frequency lu is defined as follows.

/(x , i) := /„(x)e(“ > := (/„ ,(*) +  i / 0i( x ) ) , (2.32)

where /o(x) : fi —*• C is a complex function of the spatial co-ordiantes x, and 

/or (x) : fl -* R and /of(x) : Q —> R are real fimctions of x. The indicates a 

complex quantity, and the subscript “0 ” indicates that the quantity is independent 

of time. The complex quantity /o(x) is popularly referred to as a “phasor.” The 

angle

is called the phase angle. I

The quasi-static electromagnetic problem is formulated by substituting all 

the field quantities and the potentials in the transient problem (2.26) by their re

spective time harmonic representation. The term ê tut  ̂ is then eliminated. In the
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time-harmonic problem stated below we determine the electric and magnetic field 

quantities for a prescribed distribution of current (specified by J a) and a prescribed 

voltage (specified by with appropriate boundary conditions.

Find A 0(x) : 12 —► C3 and V'o(x) : 12 —► C forall x  G 12, 
we satisfy

such that

curl H 0 — — J / 0 =  J ao V x  G 12 ,

zo;|divD oj +  d i v j / 0 =  —d iv J^ V x  6  12 ,

with the volume constraint

PfO Pa0 in 12Pa C 12 ,

with the interface constraints

K/o = K ao on 512k* C 0  i

° /0  âO on 012 o-a C 12 ,

with the boundary conditions for the real part

Re {A0} =iZe{Aao} on r'sAr )

Re {Hq x n} =  Re { ( f i 0 x n) } on r fcAr,

oV05IIo<D05 on r g*r ,

Re {(icuDo + j / 0) *n| =  Re {((iwDo +  J /0) *n)o} on r j

with the boundary conditions for the imaginary part

6II

I

011 rSA. ,

I m  {fio x n |  =  Im  {(Ho x n) } on v hAi ,

Im  o} =  I m  {^oo} on r g* . ,

I m  {(iu/D0 +  J /0) *n} = I m  {((ia /D 0 +  J /0) *n)a} on Th+i ■

(2.33)

The boundary 312 =: VhAr U r ffAr, where I \ Ar is the part of the boundary with a 

H r field specified, and r gAr is the remaining part of the boundary where the vector
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potential A r is specified. In addition, the boundary dQ =: I \ A. U where T ^ . 

is the part of the boundary with a Hi field is specified, and is the remaining 

part of the boundary where a vector potential A, is specified. The boundary dQ =: 

I V  U r s*r , where is the part of the boundary with a ( —u;D0i +  J/0r) field is 

specified, and r ĝ r is the remaining part of the boundary where a potential ipT is 

specified. In addition, the boundary dQ =: U r w ., with T ^ . is the part of the

boundary where a (u;D0r +  J /0t) is specified, and is the remaining part of the 

boundary where a potential ipi is specified.

2.3. Gauge Conditions.

The solution of the electromagnetic problems (2.23), (2.24), (2.26), and (2.33) 

in terms of the electromagnetic potentials A and ip is not unique. If (A,t/>) is the 

solution of the electromagnetic problem, then a set of potentials (A ', ip') that are 

defined by
A ' := A +  grad /  , 
ip' : = i p -  f  ,

for any arbitrary scalar function /  : fi —► R produces the same field via the definition

(2.16). Hence, the problem does not have a unique solution. However, from a 

numerical standpoint, a unique solution is important (Williamson and Chan [1993]). 

It improves convergence, and in some cases, the accuracy of the solution. For eigen

value problems, non-uniqueness can lead to spurious modes; see e.g., Kikuchi [1987], 

Bossavit [1989], and Bossavit [1990].

A simplistic viewpoint to explain the non-uniqueness of the potentials is based 

on relating A to the “motion” of a volume (MacNeal [1989]). Consider a cube in 

Figure 2.3. Uniqueness is achieved when the translation, the rotation (related to to 

the cu rl), the volume change (related to the divergence), and the “deformation” are 

specified. The curl A is specified by Ampere’s law, i.e., by (2.3). The translation and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Translation Curl (Rotation)

.u •"

Divergence (volume change) Deformation

Figure 2.2. Vector potential A interpreted as “motion” with four 
primary parts: Translation, rotation, divergence, and deformation.

the “deformation” are specified by appropriate boundary conditions on A. However, 

the above problem formulations does not include any constraint (specification) for 

div A, and hence, the solution is not unique.

To make the solution unique we need additional constraints on the potentials 

(A, tp). These constraints are termed gauge conditions. The word gauge refers to
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the fact that the pair (A ,ip) can be calibrated (Lowther and Silvester [1986]). The 

popular gauge conditions can be categorized into differential gauges and algebraic 

gauges. Differential gauges include a constraint that involves the derivatives of the 

potentials. Coulomb gauge,9 Lorentz gauge, London gauge, etc., are differential 

gauges (Hammond [1982]). Compared to the differential gauges, the development 

of algebraic gauges is recent (Carpenter [1977] and Brown [1982]). Algebraic gauges 

do not directly constrain the derivatives of the potential, and hence, are easier to 

implement in a FE solution. A popular algebraic gauge is to constrain the vector 

potential A using A*w =  0, where w is a field without closed field lines. The 

gauge is effectively enforced for edge elements using a “tree” technique; see e.g., 

Albanese and Rubinacci [1990]. However, the formulation and implementation of 

algebraic gauges has been confined to magnetostatic and eddy-current problems. 

Its performance for problems with material properties changing with position is yet 

to be studied. Numerical results demonstrate that algebraic gauge overconstrains 

the vector potential A at material interfaces (Mesquita and Bastos [1992]). For the 

problems with capacitors, the Coulomb gauge is relatively easy to implement in the 

FE formulation, and is the gauge of choice for the remainder of the thesis.

Coulomb gauge10 requires the constraint

div A(x, t) =  0 , (2.35)

to be satisfied for all time i 6  R+ and at all points x 6  R3. Substituting the Coulomb 

gauge in (2.34), we obtain

div (grad / )  =  0 .

9 T he Coulomb gauge is also referred to as the transverse gauge; see e.g., Jackson [1962, p. 
141].

10 For time-harmonic problems, the Coulomb gauge translates into two constraints, i.e, div A r =  
0 and div A ,• =  0 for all time t  6  R+ and a t all points x  6 R3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

36

If the function /  on the boundary is confined to zero, then using the Maximum 

Principle11 (Courant and Hilbert [1962, p .255]) we can show that /  =  0 inside the 

domain of solution. Hence, the potentials (A, ip) axe unique. The above arguments 

do not hold true if the domain under consideration has discontinuous material prop

erties, in particular, the permeability fi. For example, in a problem with a trans

former, the core has a high permeability f i ,  and the surrounding air has low f i .  In 

this case, the Coulomb gauge does not eliminate the nonuniqueness of the vector 

potential but rather “narrows” down the nonuniqueness (Mayergoyz [1993]). In such 

problems, a notion of “combined” gauges may be used, where additional constraints 

at the material interfaces are imposed; see e.g., Mayergoyz [1993]. In the discus

sions that follows, we use the Coulomb gauge combined with appropriate boundary 

conditions. Imposing the Coulomb gauge does not make the solution unique, but it 

does reduce the degree of nonuniqueness of the solution. Section 3.2.1 on page 40 

discusses the enforcement of the Coulomb gauge in a FE solution.

Under the Coulomb gauge, the vector potential A still obeys the wave equa

tion, however, the wave propagation effects are removed from the scalar potential 

ip. Therefore, if} is also called as the instantaneous potential. The dynamic (wave) 

effects of the electric field are now contained in the vector potential A.

11 The M aximum Principle can be stated as follows. Let the function /  be regular and harmonic 
in a connected volume ft and continuous up to and on the boundary (9ft). Then its maximum 
and minimum axe always attained on the boundary; the m aximum and minimum are attained in 
the interior if and only if /  is a  constant.
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CHAPTER 3 
GALERKIN PROJECTION

In this chapter we formulate the weak (variational) counterpart of the static, tran

sient, and time-harmonic problems formulated in Chapter 2. Problems (2.23),

(2.24), (2.26), and (2.33) are second-order partial differential equations in terms 

of the potentials (A, ip), and hence require (A, ip) to be at least twice-differentiable. 

However, the solution to the the weak forms presented in this chapter, require (A, ip) 

to be only once-differentiable. These weak forms are used to construct the matrix 

equations in Chapter 4.

3.1. Weak Form for the Electrostatic Problem

Let W^, : (fl \  ficond) —► R be a weighting function.12 We transform problem

(2.23) into a weighted residual form

f  {div D 0 — £/0} dfl =  0 V W * € R .  (3.1)
Q\0 cond

Using the vector identity

(divDo) =  div (W$D 0) — grad W ^'Do

12 The weighting function corresponding to the unknown ipo should be represented by W* .
V'o

However, to improve the readability of the document we omit the dot “ ” and the subscript zero 
“0” .

37
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and applying the divergence theorem13 we obtain the weak form

Find tpo fc Syo , V x  6 (ft \  Qamd), such that

— f  grad W,r, • D 0 dQ 
Jn\ncmd

=  f  P a dQ -  f  w * ( D o - n )  d ( d f t )  , V W *  6  V*0

(3 .2 )

As explained earlier, we split the boundary 3ft = : T ,•  U T • , where T • is theJ 9*o h*o
part of the boundary on which the field D 0 • n is specified, and T  ̂ is the remaining

part of the boundary on which ip0 is specified. Recall that D0 =  e0E 0 +  Po (Eo) =  
• •

—e0grad^>0 +  P 0(—gradV’o) using the constitutive law (2.6), where P 0 is electric 

polarization.

The terms on the right-hand side of the equation are associated with the 

“known” quantities that are specified in the problem statement. The term on the 

left-hand side of the equation corresponds to the “mass”14 matrix in the final matrix 

equation (4.23). The space V^0 for the weighting functions is defined as

v*0 : = w + ( x )  =  o , v X  6 , (3.3)

13 Let v : —♦ R be continuously differentiable vector field. Then the divergence theorem
states that

f  (d iv v ) dQ = f  v » n  d(dQ) ,
Ja J{aa)

where the surface (dQ) is the boundary to the volume fi, and n  is the unit outward normal to the 
surface (dQ).

14 The nomenclature “mass” , “dam ping” , and “stiffness” is adopted from mechanics. The 
“m ass” is associated with the acceleration (second time-derivative of position), the “damping” is 
associated with the velocity (first time-derivative of position), and “stiffness” is associated with 
the displacement (position). In the m atrix  equation (4.53) for transient problems, we observe that 
the term s containing the perm ittivity e are associated with the second time-derivative and hence 
are referred to as components of the “m ass” matrix. Similarly, terms containing the conductivity 
a  and permeability fi are referred to as components of the “dam ping” m atrix and the “stiffness” 
m atrix, respectively.
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where

and

H 1 (12) := ju; w e  Li(Q) and ^  e  £ 2^ )  j , (3.4)

L2(£l) := ju> w2d£l < -foo j  =  7iP (11) .

The space for the trial functions is defined as

s*0 :=|wr0ew1(n\ncorui) w*(x) = V’oo, v x e r (3.5)

Note that in the present document, character S  is used for the space of trial solutions, 

and the character V is used for the space of weighting functions.

3.2. Weak Form for the Magnetostatic Problem

Let W A : 12 —► R3 be a weighting vector field on 12. We transform problem

(2.24) into weighted residual form

/  W A* {curlHo -  J ao} d!2 =  0 , V W ^ R 3 . (3.6)
j n

Using the vector identity

W A* (curl H 0) = -d iv  (W A x H 0) +  (curlW A)*H 0 

and applying the divergence theorem we obtain the weak form

Find Ao € <5̂ 0 such that

/  (cu rlW A) *H0 d!2 
J n

= f  W A*Jao dll -  f  W A- (H 0 x n) d(d  12) , V W A 6 VAo .
•m J rk.

A q

(3.7)
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The space V^0 for the weighting functions is defined as

:=  < fw , e  I -  0 V x c L  1-X. ^ - - \--/ j TT rtV-'-/ — « ) w 3yl0 J 7

and the space of trial solutions

S a ,  := j w x  £ H ‘ (SI) W„(x) = A „ , V x  £ 1 .

•S)

(3.9)

As explained earlier, we split the boundary 9ft =: U Tff>lo, where Th^  is the

part of the boundary on which the Ho x n field is specified, and r 3jJ(j is the remaining

part of the boundary on which Ao is specified. Recall that H 0 =  — B0 +  M 0(B0) =
/io

— curl Ao+M 0(curl Ao) using the constitutive law (2.6), where Mo is magnetization. 
Po

The terms on the right-hand side of the equation are associated with the 

“known” quantities that are specified in the problem statement. The term  on the 

left-hand side of the equation corresponds to the “stiffness” matrix in the final 

m atrix equation (4.23).

3.2.1. Coulomb Gauge

Uniqueness is enforced on the admissible vector potential Ao € S Ao using the 

Coulomb gauge (2.35) via a penalty method (e.g., Williamson and Chan [1993]). 

The weak form in (3.7) is modified to find Ao £ <Sa0 such that

/  (curlW A)-H o  dft +  /  b (d iv W A)(d ivA 0) dft 
J n J n

=  /  W W ao dft -  [  W A• (Ho X n) d (9fl) , V W A e  VAo ,

(3.10)

where ]>(x) : ft —► R+ is the penalty parameter. The choice of the penalty param

eter \> is crucial to the numerical accuracy of the ensuing solution. Choosing an 

extremely high value for \> leads to a trivial solution A  =  0. This phenomenon of 

overconstraining the vector potential is called mesh locking. On the contrary, too
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small a value of \> leads to a non-unique solution. In order to obtain an effective 

solution, the term

n
■ {5 (div W x) (div A q) dQ (3.11)

is integrated using reduced integration (fewer Gauss integration points than the 

other integrals) with a suitably high jx The reduced integration renders singular 

the FE m atrix that corresponds to the Coulomb gauge. The penalty parameter }> 

is estimated by trials and errors. Williamson and Chan [1993] notes that the en

forcement of the Coulomb gauge is not crucial if we use direct solvers (e.g., Gauss 

elimination), however, for iterative solvers, the Coulomb gauge must be strictly 

enforced. The no-gauge formulation is also effective for some electromagnetic prob

lems see, e.g., Cendes, Weiss and Hoole [1982], Hoole, Rios and Yoganathan [1988], 

Nakata, Takahashi, Fujiwara and Shiraki [1990] and Morisue [1993]. The Coulomb 

gauge in electromagnetics is equivalent to the incompressibility constraint in elas

ticity. Most of the methods to enforce the Coulomb gauge have been derived from 

methods used in incompressible elasticity.

In addition to the penalty term in the weak form, it is imperative that the 

boundary of the electromagnetic problem does not excite div A. This is enforced in 

an integral sense as follows:

(3.12)

where dQ is the surface boundary enclosing the volume Q. A convenient choice to 

enforce the above condition is to choose Ao*n =  0 on the boundary, where n is 

the unit normal to the surface dQ. To recapitulate, the Coulomb gauge is enforced 

via the inclusion of the a  penalty term (3.11) in the weak form, and a boundary 

condition Ao*n = 0  on the exterior surface.

An alternative to the penalty method to enforce the Coulomb gauge is the use
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of the Lagrange multiplier method. However, the Lagrange multiplier method re

quires the use of an additional variable, the Lagrange multiplier, and hence increases 

the number of unknowns to be determined (see e.g., Lee [1993]).

3.3. Weak Form for the Transient Problem

In the ensuing discussion, we focus on a simple case with Assumption 3.1. 

W ith this assumption we transcribe problem (2.26) into a weak form.

Assumption 3.1. The following assumptions axe made to solve time-dependent 

problems: For all time t > 0, the Volume-charge density p} is not prescribed any

where in the volume fi, and the surface current K 0 and surface-charge density cra 

are not specified on any surface inside the volume fi. I

3.3.1. Ampere's Law

Let W ji : SI —> R3 be a weighting vector field SI. The weighted residual form 

for the first equation in (2.26) is

jc u r lH  — J /  —J 0j  dQ = 0 , V W A G R3 . (3.13)

Using the vector identity

W A* (curlH ) =  div (W A x H) +  (curlW A)*H

and applying the divergence theorem to (3.13) we obtain

f  W A* (H x n ) d(dQ) + [  (curl W A) «H dQ -  f  W A > ^ - d Q  
Jqo Jo Jo dt

- ^ W A*J a d f t -  J  W A' J f  dQ =  ° , V W a <eVa .

If the boundary dQ =: ThA U r 3x, where is the part of the boundary with a 

H  field specified, and T3yl is the remaining part of the boundary with the vector
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potential A  specified. Then we can rewrite the above equation as follows

~ b W A '~dt dn ~ In W x ‘ J /  dM + * H  dn

= - [  w A*(Hxn) d ( a n ) +  f  w w a dn , v w Aev .JrhA Jn

(3.14)

The terms on the right-hand side of (3.14) are associated with the “known” quanti

ties that are specified in the problem statement. The three terms on the left-hand 

side of the equation correspond to the “mass”, “damping” and “stiffness” matrices, 

respectively, in the final matrix equation (4.53). The space VA for the weighting 

functions is defined as

V* := |  w , = { w \ ,  w l  w \ )  € (w1 (SI))3

W'A £ « '( f i )  V i =  1,2,3 and W A(x) = 0 , V x  €  r aj j  ,

(3.15)

and the corresponding space of trial functions (used later)

5a := |  W a =  { W \ ,  W>, S (H 1 (f i) )3

£ H'(S1) V » =  1,2,3 and W a(x) = A . , V x 6  T,,, J. .

(3.16)

3.3.2. Time-integrated Continuity Equation

Let Wy/, : fi —► R be a weighting function. The weighted residual form (2.26)2

is
f 9divD

In ^  (  ~~dt 1" ^ /  + div J a|  d£l =  0 , V W^ € R •

Using the vector identity

(div D) =  div (W^D) — grad • D

(3.17)
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and applying the divergence theorem we obtain

/  W* I ' |  d{dQ) -  f  g r a d W * - ^  dQ +  f  W ^fd ivJJ  dQ 
j 5Q \  oL /  Jn 01 Ju

+ f  Wy, (J /* n ) d(dfi) -  /  grad dfi =  0 , V Wy, G Vy, .
J do Jo

The boundary dQ = : U Tgil, where is the part of the boundary where the
f  5D \
I +  J /  I field is specified, and Tgi, is the remaining part of the boundary where 

the time integrated scalar potential V> is specified. Then we can rewrite the above 

equation as follows.

— [  grad Wy, • dQ — f  grad W* • J  r dQ 
Jo c/t «/o

= - J r W+ d ( d Q ) - J ^  W * (J ,-n )  d (5 n )+ jT  W ^(divJa) dQ ,

(3.18)

The terms on the right-hand side of the equation (3.18) are associated with the 

“known” quantities that are specified in the problem statement. The two terms on 

the left-hand side of the equation correspond to the “mass” and “damping” matrices, 

respectively, in the final matrix equation (4.53). The space Vy, of weighting functions 

is defined as

Vy, :=  |  W + e H 1 (Q) W*(x) =  0 , V x 6 r 3,  |  , (3.19)

and the corresponding space of trial solutions (used later)

s * := jw y, 6 H 1 (12) Wy>(x) =  ipa , V x  6  r w (3.20)

3.3.3. Combined Weak Form

To state the weak form in a concise form, we define the following. Let the 

combination of the vector potential A and the scalar potential ijj be defined as

= {A 1, A2, A3,^ }  ,n := < A (3.21)
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where II  : fi x R —* R4 is the combined potential. Let W  : Q —> R4 be a weighting 

function

w^jwx wA = {w\,wl,wl,w^} .
Let the space V of trial functions be defined as

V :=  |  W  = { W 1, W 2, W 3, W 4}

{ w 1, W 2, W 3} G VA and W 4 € V* j  , 

and the space of trial solutions S be defined as

S  := |  W  =  { W \  W 2, W 3, W 4}

{ w \  W 2, W 3} G S A and W 4 G 5* j . 

The weak forms (3.14) and (3.18) are combined as follows.

(3.22)

(3.23)

(3.24)

Given n 0(x) and IIo(x), find II  G S V x  G 12 and t > 0 such that

gm{ w,  n) + gb( w ,  n) + gk( w ,  n) = gf{ w ) , v w e v ,

where the new operators are defined as follows.

   3D „  r

(3.25)

3D
S i * 1 ' (3.26)

J f dQ , (3.27)

(3.28)^ ( W . n )  := /  (curlW x) *H dQ , and
Jo

gf ( W)  := -  /  W A- (H x n ) d(Q) +  [  W A-Ja dQ 
JvhA Jo

- [  d ( d Q ) -  f  d(3fi)(3.29)
J \  at )  JVhi,

+ [  W^,(div J 0) dQ .
Jo
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The field quantities D, J /  and H  are related to the potential II and its time and

spatial derivatives via the constitutive equations (2.6). From (2.26), we have ^ 0 =  0
* •

and Ao =  0. The problem to determine the remaining initial values, i.e., i/>0 and A0

are axe obtained by solving (3.7) and (3.2), which can be concisely stated as follows.

Find IIo(x) G So and IIo(x) G S 0 V x  G Q, and t >  0 such that

Sm o(w ,n0) +  & o (w ,n 0) = gf0(w ) , v  w  e  v 0 .

The space Vo is defined as

Vo := |  W =  { W \  W 2, W 3, W 4}

{W 1, W 2, IV3} G Vao and ^ 4 gV*0} ,

and the spaces of trial solutions So and So are defined to be 

So := |  W  =  { W \  W 2, W 3, W 4}

{ W \  W 2, W3} G SAo and W 4 =  oj ,

$o ;=  |  W =  { W \ W 2, W 3, W 4}

W 1 = 0 , W 2 =  0 , W 3 =  0 , and W 4 G S*0 |  .

The operators axe defined to be

Smo(W ,n 0) := -  [  grad • D 0 d£l ,

^fco(W,n0) := /  (curlWA) *Ho dfi , and
Jn

0A(W) := [  W v (H o x n ) d(fi) +  /  W W o* dfi
Jr»A0 Jn

-  f  (D • n) d(dQ) .
JV  •

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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The field quantities Do and Ho are related to the combined potential n 0 and its time 

and spatial derivatives via the constitutive equations (2.6). The Coulomb gauge is 

imposed similar to the magnetostatic case in Section 3.2.1 on page 40. The stiffness 

operators Qk and are modified to include the penalty term.

3.4. Weak Form for the Time-Harmonic Problem

Again we focus on a simple case with Assumption 3.1. With these assumptions 

we split the problem (2.33) into a weak form for its real and imaginary parts as 

follows.

3.4.1. Ampere’s Law

Let W a : fl -+ C3 be a weighting function. The weighted residual form for 

the first equation in (2.33) is

J  W Ap* {curlHor +£uD0i -  J /or -  Jaor } dQ =  0 
. • 

yn wAi* |c u r lH 0l- -  wD0r -  J /oi -  J aoi} dQ = 0

Similar to the transient case, we obtain

f  W At- (H0rx n ) • d(dQ) + /  (curlWa,.) *H0r dQ + u [  W Ar-D0l dQ 
Jan J n J n

-  I  W Ar • Jaor dQ -  f  W Ar-Jfor dQ =  0 , V W Ar e VAr ,
J n J n

and

[  Wa,* (Ho.xn) d(dQ)  +  [  (cutIWa.) ‘Ho,- d Q - u  f  W a.'Dq, dQ 
Ja n J n J n

-  [  Wa,* Jooi dQ -  f  W Ai-Jfoi dS2 =  0 , V W Al- € VAi .
J n Jn

- V W a 6 C3 . (3.37)

The boundary dQ Fft.Ar U r g>lr> where is the paxt of the boundaxy with a 

H r field specified, and r 3Ar is the remaining part of the boundary where the vector

potential A r is specified. In addition, the boundary dQ =: U r 3/l., where

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

48

is the part of the boundary with a H t- field is specified, and r SA. is the remaining 

part of the boundary where a vector potential A i is specified. We can rewrite the 

above equations as follows.

+u; /  W Ar-D0i dn -  [  WAr-J/or dn +  /  (curlWAr) -H0r dn 
j q  •/(! j u

=  f  w Ar• (H0rxn) d{dn)  +  [  w^j-'Joor dn , v w Ar g vAr,
Jr*Ar jQ

- 0 / /  W Ai*D0r dn -  f  W Ai-Jfoi dn +  [  (curlWAt) -H0i dn
•/Q */n «/n

=  /  W Ai- (Hwxn) d (d fi) +  /  WAt* dfi , V W At G VAi .

(3.38)

The terms on the right-hand side of (3.38) are associated with the “known" quanti

ties that are specified in the problem statement. The spaces of weighting functions 

are defined as

, 3
VAr := |  W „  = {WJ, W \, W*} 6  ( « '  (fi))‘ 

W A(x)  =  0 , V x 6 r „ , ,  )  ,

v Ai := |  w 4 = { w \ ,  W \, W>} € ( « '  (n ) ) :

W A(x) =  0 , V x  G r 9 A ,- I  )

Va :={  W A =  (W Ar + *WAi) : fl -» C3 W Ar G VAr and W Ai G VAi j  .

(3.39)
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The spaces of trial solutions are defined as

s Ar :=  |  w A =  { W l  w*, w * }  € (:h 1 (Q))3

W A(x) =  Aaor , V x  € VgAr |  , 

:=  |  W A = { W l  W l  W>} € ( f t1 (Q))3

W A(x) = A aor , V x  € r gA. |  ,

:= W A = (W Ar +  *WAi) : Q -  C3

3.4.2. Time-integrated Continuity Equation

W Ar 6 S Ar and W Ai e  S Ai j  ■

(3.40)

(3.41)

Let Ŵ p : Q —*■ C be a weighting function. The weighted residual form for the 

second equation in (2.33) is

J  Wj,T { -d ivD oi +  d iv J /or + d ivJaor} dQ = 0

in  {+ divD 0r +  div J foi +  div J aoij  dQ =  0

Similar to the transient case, we obtain the expression for the weak form to be

- u  [  (D 0i*n) d(dQ) + u> f  grad • Dot- dQ +  /  Wy, (d iv JQ0 ) dQ
Jen Ja Ja

+ Jm W*r{J f , r - n) i ( « l ) - j [ g r a d W * r'J Al.<fil =  0 ,  V W*, e  V*„ .

and

+cj  I  (D 0r’ i i )  d(dQ )-u>  f  grad Wy,,. • D 0r dQ + f  W ^ (d iv JaoJ  dQ.
*/6fl JO  J  0

+  Jgn w *i (J h i  *A) d (5fi) ~  Jn ^ d  W+.• J /oi dQ =  0 , V W^>i 6

The boundary dQ =: r ^ r U r s^r , where r ^ r is the part of the boundary with a 

(—u/Doi +  J/or) fie^d is specified, and r 3̂ r is the remaining part of the boundary

where a potential if)r is specified. In addition, the boundary dQ =: I \* t. U r s+i, with
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I\* . is the part of the boundary where a (u;D0r + J / oi) is specified, and r s*t. is 

the remaining part of the boundary where a potential ipi is specified. Then we can 

rewrite the above equations as follows.

— /  grad J /0r dQ + u> grad • Do* dQ
«n Jn

= u f  W*r (D0t-n )  d(d(l) -  f  W*r ( j /or-n) d(dQ) + [  W*r(div J O0r) dQ ,
J FhiiT JFh.1, r  ■ 'f l

V W4r G v*r ,
— / grad Wipi * J /01 dft —a; / g r a d • D0r dft 

•/n jo

= -uj f  W+i (D0r*n) d(dQ) -  f  W*. ( j / 0t *n) d(dQ) +  f  W ^ d iv  J O0t.) dQ ,

V W * € V*. ,

(3.42)

The terms on the right-hand side of (3.42) axe associated with the “known” quanti

ties that are specified in the problem statement. The spaces of weighting functions 

are defined as

V*r :=  jw *  G H l (Q) and W*(x) = 0 , V x  G T ^ r |  , 

V* :=  |  W+ G H 1 (Q) and W ^ x )  = 0 , V x  6 Tw . |  , 

V* := |  W^, =  (W0r +  iW+t)  : Q ^ C Wj r e  Vv,r and G

The spaces of trial solutions are defined as

(3.43)

S ir  := j  S H 1 (fi) and W*(x) = tf„r , V x  £ r „ .  1 ,

S *  := |  W* e  H> (0 ) and W*(x) =  ^  , V x  €  J ,
=  -f- iWy^J : fl —* C W^,r 6 <Ŝ ,r & E 1 .

(3.44)
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3.4.3. Combined Weak Form

To state the weak form concisely, we define the following. Let the combination 

of the vector potential Ao and the scalar potential ipQ be fio : fi —► C4 which is

n 0 n 0r +  f H o i ,

where n 0r : —> R4 is

and n 0i : fi —> R4 iis

n 0r  : =  | a f V ' r j  =  { A ^ A ^ A 3^ }  ,

n 0i : =  | a » t f i j  s j A S . A ' i . A 3^ }  .

Let W (x) : —► C4 be a weighting function that is defined to be

(3.45)

W  :=  W r +  zWt (3.46)

where W r : R —► R4 is

W r :=  W A t W*r 1 =  { w \ r , W \r, W l ,  W ,r } , (3.47)

and W i : f2 —► R4 is

W,- :=  W.A i W*i =  { K i ,  W li, W in  W * }  . (3.48)

Let the space V be defined as

V := W  =  W r + -> c 4

where W r and W ,• axe defined in (3.47) and (3.48)

w Ar  e  Vat > €  Va{

W t f r  ^  ^  ^ . }  >

(3.49)
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and the space of trial solutions S  be defined as

S := I W  = W . + iW: : O —> C4 
I ’

where W r and W , are defined in (3.47) and (3.48)
(3.50)

E S at > W Ai £  S A i  

W jr € S,j,r and W^  .

Now the weak form for the time harmonic problem can be stated as follows

Find fto 6 S  V x  E P  such that

gm( w ,  n 0 ) +  gb( w ,  n 0 ) +  g k( w ,  n 0 ) =  g f ( w ) , v w €  v ,
(3.51)

where the operators Gm =: Gmr + iGmi, Ob =: Gbr +  »'</*, =: and

£ / =: Gfr + iG fi , are defined as follows.

Smr( w , n ) := +u/ W ^r • D0l dP +  u  J^ grad W1pr • D 0t dP , (3.52)

Sm i(W ,fl) :=  —u  f  W ^ i’Dor dQ —uj f  grad W *■ • D 0r dQ , 
J a Ja l (3.53)

g u  w , n ) :=  -  f  W Ar*J/r d Q -  f  gradW ^r * J/r dP , 
</n «/n (3.54)

Gbi{W,tl) :=  ~  jf  W Xi- J /{ dP -  j f  W V  J / .  dP , (3.55)

Gkr(W ,tL ) := [  (curlW Ar) *Hr dP , 
Ja

(3.56)

Qki( W , n ) := [  (cu rlW ^) *Hi dP , 
Ja

(3.57)

0 f T{ W ) := [  W Ar-(H 0rx n ) d (P ) +  f  W Xr-Joor dP

+  " £  W0 r(DOt*n) d (5P ) -  /  Wv,r (j/o r *n)
■/rMr

d (3P )

+  [  Wy,r (div J aor) dP , and 
j n

(3.58)
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g f .( W ) :=  /  W Xi. (H o,xn) d(fi) +  /  W Ai« J ^ -  dft

- u f  ^ t.(D 0r-n) d(dQ) -  f  ( j /o..n )  d(dQ)
JrWi Jrh-+i

+ f  ^  ' (3.59)
•/ n

The field quantities D 0, J /0, and H 0 are related to the potential f t  and its spatial 

derivatives via the constitutive equations (2.6). The Coulomb gauge can now be 

imposed in a similar fashion to the magnetostatic case in Section 3.2.1, page 40, i.e., 

include the penalty term

[  f>(divWAr)(d iv A 0r) dn 
J n

in the stiffness operators Qî , and include the penalty term

[  \> (div (div A 0t) dn 
Jo

in the operator Qt .̂
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CHAPTER 4
APPROXIMATION FOR LINEAR-ISOTROPIC MATERIALS

In this chapter we express the weak form (3.42) for static excitations, (3.25) 

for transient excitations, and (3.51) for time-harmonic excitations, as m atrix equa

tions (4.23), (4.53) and (4.67), respectively. To do so we use a first-order Lagrange 

isoprameteric 8-noded brick element. The formulation is limited to linear-isotropic 

materials, however, can be extended to materials with more complex constitutive 

laws.

Here, as a first approximation, we assume linear-isotropic constitutive rela

tionships, i.e., the relations in (2.6) take the form

D =  e ( x ) E ,  H = ^ B ,  J /  =  a ( x ) E ,  (4.1)

where the permittivity e, permeability fi, and conductivity cr are only functions of 

position x, but are not functions of time t or functions of the electromagnetic field 

quantities.

The accuracy of the FE solution depends on the data (geometry and material 

properties) available for the electrical component being analyzed. The manufac

turing process, especially firing, changes the material properties (Morweiser, Meu- 

nier and Salze [1994]). The thin electrodes often develop numerous holes, thereby 

changing the conductivity. The dielectric properties of the final ceramic are differ

ent. Moreover, the geometry of the electrical component may be altered. Typically 

a shrinkage is observed, but not necessarily equal in all directions. The parasitic 

parameters, like the inductance of a capacitor depends on the permeability of the

54
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ceramics. This information is usually not provided by the manufacturer. Hence, 

additional tests need to be done prior to numerical simulation.

Electromagnetic devices (a combination of various electrical components) gen

erally have abrupt changes (i.e., discontinuities) in material properties across the 

material interfaces. Such material discontinuities induce the dicontinuities in certain 

components of the field quantities, thus requiring special elements and numerical 

algorithms to model interfaces (Monk [1993] and Lee and Masfen [1990]). As the fo

cus of the present work is to model the global properties (the lumped parameters) of 

the device, we choose not to employ any special elements to treat the discontinuities 

at the material interfaces.

4.1. Static Problem

As a consequence of the linear-isotropic constitutive relationships (4.1), the 

potentials Ao and ipo used in static problems axe related to the field quantities D 

and H  as follows:

• X
D =  — e(x) grad xpQ and H  =  - - curl A0 . (4.2)

fi(x)

Recall that J /  =  0 in static problems.

4.1.1. Weak Form

Our goal is to transform (3.30) to a matrix equation. Because the combined
9 9

potential n 0 6 S q and IIo 6 5o, there are only four  unknown quantities in (3.30),
9

i.e., A0 and ip0. As the problems axe time-independent, the remaining quantities, 

i.e., Ao and ip0, axe set to zero prior to solution; see Section 2.2.4 in page 25 for 

details. For convenience, we define a new variable To : >-*• R4 as follows:

To := Ao f a ]  =  { ^ ,  A 2q, A 30, fa ,  } € R4 , (4.3)
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which contains only the unknown quantities Ao and tpo- We simplify the expressions 

for the operators defined in (3.34), (3.35), and (3.36) for linear-isotropic materials 

as follows:

(i)£/mo(W, T 0) := f  e(x)(grad W^) • (grad^o) dQ ,
Jn\ncmd K '

(I)S * (W , To) := (curl W ^) • (curl A0) dQ, , and

(0S/o(W) := [  W A- ( H 0xn)  d ( S i )  + f  W A-Jao c
Jr»A0

- f  W*(D*n) d(dfi) .
J r  •

Recall that the weighting function has the form

W  := I W j

The weak form (3.30) now becomes

W+\ GR4

Find T 0 6 ^ S q such that

(i)^mo(W, To) +  « f to ( W ,  To) =  (0S/o(W ) , V W  € Vo . 

The space of trial functions ^<So is defined to be 

('>S0 := (  W  =  [ W 1, W 2, W 3, W “}

{w\ W 2, and W * € S * , j  .

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

To account for the non-homogeneous essential boundary condition, let us split the

W  rnsolution To into a known function To £  ̂'Sq that satisfies the essential boundary

condition and an unknown function To E Vo that satisfies the homogeneous essential
[As] [u]

boundary condition, i.e., To =  T 0 + Tq. As all operators involved are linear, we
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can rewrite the above weak form as follows

[•-] [“ ]
Given T 0 G ^ S 0, find T 0 G Vo such that

(,)a*(w, f i )+<0efe(w, ̂ 0) = «ff*(w)

-  (,)ft* ,(W , *?„) -  ('Ifij.fW , £1) , V W  6 v „ .

(4.9)

4.1.2. Discrete Weak Form

The conforming FE method for solving (4.9) consists of finding an approxi- 
[u] _ _ [u]

mate solution Toa(x) in a finite-dimensional subspace Vq^ C Vo, where To/i(x) is a

solution to the following problem

[k\ [u]
Given T 0fcG ^ S 0h, find T 0h G V0H such that

=  il)Gfo( W h)

-  (l,& n o (£ L  w fc) -  « g * ( ? L  W fc) , V W fc 6 V0fc .

(4.10)

The space Vo requires that the functions satisfy the homogeneous essential 

boundary condition on part of the boundary of dCl. However, in practice, it is more 

convenient to construct a finite element space W* that has no such requirement at 

the boundary. These requirements are later imposed on to obtain the finite 

element space Voh- From definitions (3.3), (3.8), and (3.31) it is clear that if v  :=  

{u1, • • •, r 4} 6 Vo, then if v1 are chosen as polynomials, we have the equivalence

vi 6 H 1 («) ul" G C° (ft)

for i =  1, • • •, 4, where ft := ft U 9ft is the closure of ft, and

c ° (« )  ;=  { ■u : ft —► R and v is continuous |  .
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To define a finite element space Wa, we must specify the following (Johnson [1987, 

p.79]): (1) A compact subset T  of ft with a non-empty interior and Lipschitz- 

continuous boundary, (2) a finite-dimensional space Pt  of polynomials defined on 

T  of finite dimension, and (3) a set E of parameters called degrees of freedom, to 

describe the functions in Voa- To recapitulate, a finite element discretization is a 

triplet (T, PT, E), such that a function in Pt is uniquely determined by the degrees 

of freedom E. An example of a choice of the triplet (T, Pt , E) is the case of nodal 

FE described below. Let

|lVfc : fi —*■ R for k =  1, • • •, x j

be a set of basis functions in Vo, such that Nk s are not required to satisfy the 

homogeneous essential boundary conditions, and Nk 6 Pt  (i.e., when restricted to 

element T, the basis function Nk belongs to the set of polynomials Pt ). Let

W h := sp a n [N i r  ■ ■ , N ^ j  , (4.11)

V v(x)  =  { y , - - - , u 4} € Wfc,

X
«*(*) =  £  <rkNk , (4.12)

fc=l

where djj. =  dk (u‘(x)) and

dk(N}) =  6kj .

A good summary of the various requirements that space Wa should satisfy in order 

to be a finite element discretization is listed in Ciarlet [1987, pp.1.126-1.127].

Finite element method in its simplest form consists of triangulation15 (or dis

cretization) of the domain 0, into a finite elements of (Ciarlet [1987, p.1.125]). The

15 The word traingulation is used to designate general discretization of Q into finite elements, 
which are not necessarily triangles in two-dimensions.
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triangulation 7h over the domain Q is expressed as a union of triangles T, in such a 

way that whenever triangles 7\ and T2 axe distinct triangles of 7^, their intersection 

is (i) either empty, or a (ii) vertex common to 7 \ and T2, or (iii) an edge common 

to Ti and T2, (iv) or a facet common to 7\ and T2. The case of “unresolved nodes” , 

such as in Figure 4.1 is not allowed. In most finite elements, the space of functions 

P t  are chosen to be polynomial functions. The coefficients of the polynomial v  G P t  

constitute the set of the degrees of freedom £ .

In electromagnetics, the most common elements used for triangulation of three 

dimensional domains axe the tetrahedral elements and the hexahedral elements 

(Sabonnadiere [1987]). The tetrahedral elements axe especially useful for irregu

lar domains and automatic meshing. The 20-noded hexahedral brick element is a 

common choice for regular domains with curved boundaries. However, here, we will 

confine ourselves to regular domains with straight boundaries, making the 8-noded 

hexahedral brick element the perfect choice. The advantage of using the 8-noded 

first-order hexahedral brick element is the ease in meshing and eventually coding. 

Next, we review the 8-noded first-order Lagrange isoparametric brick element for a 

simple case for the finite-dimensional space C with tin =  C° (&J. We will later 

use the same principles to construct the space Vo h-

4.1.2.1. First-order Lagrange isoparametric 8-noded brick element

The finite element (T, P t ,  E) corresponding to the first-order hexahedral 8- 

noded brick element used to construct the space i i s  defined as follows: (1) The 

geometric object T  is a hexahedral brick; (2) the space Pt  :=  Qi{T)  is chosen to be
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Ti

Unresolved nodes

Figure 4.1. An example of a forbidden triangulation

the space of tri-linear functions 

<?,(T) :=  {*

x £ T  , where £ R

1
v is trilinear on T, i.e., -u(x) =  ^  a»i* (x l )l(x2)j (x3)k ,

i,j,k=0
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and (3) the set of degrees of freedom S consists of the values of the unknown function 

v g at the nodes of the triangulation 7/,. Such finite element space implies that 

the basis functions N i’s are the “hat” function, i.e., trilinear function that has a 

value one at one node and a value zero at the remaining nodes. These trilinear hat 

functions are constructed using isoparametric mapping.

In isoparametric mapping (Hughes [1987, pp.118-120]), the unknown function 

to be determined in the element T  is mapped from a parent element Sle using the 

same basis functions that are used to construct tf*. For a hexahedral brick element, 

if £ :=  {£1, <£2i £3} 6 R3 is the coordinates of a point in the parent element Qe, then 

the coordinates of a point x  £ T  is

x(0 := E Nt1 £ ) xTa ,
a=l

and the unknown function v(x) € VQh for x £ T is

v(x) := E n tJX) vt> •
a=l

The co-ordinates of the vertex a of the brick T  is Xra, and the value of the function 

v  is Vra- The parent element Qe is a biunit cube [—1,1] x [—1,1] x [—1,1] centered 

at the origin £ :=  {0,0,0}. The parent element fie is mapped to the brick T  via the 

map % : i-» T. The element basis functions axe

(4.13)

where for a =  1, • • •, 8, axe the co-ordinates of the vertices of

the cube f2e in the £ co-ordinate system; these co-ordinates axe given in Table 4.1. 

The entire transformation is illustrated in Figures 4.2.

Consider a domain Q with a triangulation %  using hexahedral bricks, and 

having a total of X nodes. Then the set of degrees of freedom S consists of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

**.«) -  j  ( i + e e . )  ( i + e t \ )  ( i + e e . ) ,



www.manaraa.com

62

Table 4.1. Local co-ordinates of the vertices of the 8-noded brick element.

a e a to
P £ 3 a

1 - 1

2 i - 1 - 1

3 i 1 - 1

4 - i 1 - 1

5 - i - 1 i

6 i - 1 i

7 i 1 i

8 - i 1 i

values of the unknown function v 6 i^h at the nodes of the FE mesh. The function 

v can be described by using the basis functions Nj(x), i =  1 , . . . ,  X, or alternately, 

using the local basis functions for each element T  £ 7^ as follows.

K
u(x ) =  £  4  M x )) Nk

k=1 (4.14)

=  £  { £  < M *(* )) * * (* )}  •
T erk U=i JTerh

The description of the function using the basis JV*, is called the global viewpoint, and 

that using basis Nrk is called the local or element viewpoint. The global viewpoint 

is useful in establishing the mathematical properties of the finite element method, 

whereas the element viewpoint is useful for computer implementation. Note that 

at a node shared by two elements 7i and T2 that belong to Th, the value of the 

function v due to the basis functions associated with element is the same as that 

associated with element T2. Hence, if i is the local node number of the common 

node in element Ti, and j  local node number of th a t common node in element T2, 

then the degrees of freedom d^u and dTl. are the same.
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Parent element Qe

Element T

Figure 4.2. First-order Lagrange 8-noded isoparametric brick element

4.1.2.2. Matrix equation

In this section we develop the matrix equations with the global viewpoint 

for a static problem. The space W& is constructed using the first-order Lagrange 

isoparametric 8-noded brick elements as done for space dh in the previous sub

section, i.e., a function v  := {,u1, - - - , u 4} 6 W/, is represented by a set of basis 

functions iVjt(x), k =  1 , . . . ,  X, as in (4.12)

K
v‘(x) =  £  4  („(x)) Nt  ,

fc=l

for i =  1, • • •, 4. The degrees of freedom <4 are the values of the function v l at node 

k of the triangulation 7/,. However, functions in space Vo must satisfy the essential
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homogeneous boundary condition. Therefore, we define the space Voh C Vo to be 

V0h :=  ( v  6 Wh v satisfies the homogeneous essential boundary 

condition specified in Vo |  .
(4.15)

Similarly, we define the space ^ S 0h C ^ 5 o  to be

^ S o h := | v  G Wh v satisfies the essential boundary

condition specified in ^<So |  , 

where the left superscript “1” denotes space of trial functions for problems with

(4.16)

linear-isotropic materials, and the right subscript “h” denotes a finite-dimensional
[fc] ([*:] [k] 'j

space of trial functions. The known function

M  fM  [“ ] I
the unknown function Y 0/l(x) := < • • •, > G Vo/,, and the weighting function

W (x) G Voh, are represented in terms of the basis functions as in (4.12). However, 

note that the appropriate degrees of freedom related to the essential boundary con

ditions have to be constrained to account for the essential boundary conditions. 

These representations are used to express the operators ^ Q mo, ^Gkc, and /0 in 

terms of the basis functions and the degrees of freedom. In the setup of the m atrix 

equation, we reduce the mathematical rigor to improve readability.

To set up the final m atrix equation, we arrange the degrees of freedom as 

follows. First, we arrange the degrees of freedom that correspond to A0 beginning 

with node 1 and ending with node X as follows.
node 1

4 ( A o ) ,d ? (A o ) ,^ (A 0)

(A0) , d^  (Ao) , d ^  (A0)

node

(4.17)
6 R(ixsX)
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Similarly, we arrange all the degrees of freedom that correspond to tpo as follows.

>4 f ,  \
d i  {V o ) 4c(^°)l 6 R(l5cX) . (4.18)

Using the above arrangement, we define the following matrices for the opera

tors ^Qrnoi and Wgfo defined in (4.5), (4.4), and (4.6). For operator ^Qko we

define the m atrix16 ICAA := [/C^j €  r ( 3̂ x3^1, with

r S riD (A IQ)
11 Jn fi{x) dx™ dxP mni pqj ii ’ (4’19)

where k is the node number corresponding to the position I ,  and I is the node 

number corresponding to the position J  in the arrangement, defined in (4.17). For 

example, if I  =  4, then the degree of freedom is d \  (Ao) in (4.17), the node number 

(the right subscript) is 2, and hence fc =  2. Summation convention is implied on 

the repeated indices, except for those indices in parentheses or indicated otherwise. 

The permutation symbol emni is defined to have the value 0, +1, or —1 as follows:

£mni • — 4
0 when any two indices are equal 
+1 when m, n, i are a even permutation of 1,2,3 
—1 when to, n, i are a odd permutation of 1,2,3

For operator ^ Q /a we define the column matrix T Aa :=  {F1/ 0 ]■ 6 R̂ 3̂ * 1), with

T f  := /  (H oxn)' JVfo d(Q) + f  dQ. , u  20)
Jr*Ao Jtt

where I is the node number corresponding to the position J  in the arrangement

defined in (4.17). For operator ^ Q mo we define the matrix := ] E
r ( X xK),  w i th

M f j  := /  6(x)» ,  dft , (4.21)
Jn\ncon<f v '  dx' dxJ 13 K '

16 Each of the entries in these matrices are calculated using Gauss integration. For the problems 
solved in this report, numerical experiments have shown that a  two-point Gauss integration in each 
direction is sufficient, i.e., a total of 23 =  8 Gauss points, to obtain an accurate integration.
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where k  is the node number corresponding to the position I ,  and I is the node 

number corresponding to the position J  in the arrangement defined in (4.18). For 

operator WQf0 we define the column matrix :=  {.T7/ 0} £ r ( ^ x1)j

T f  := - /  (D « n )Ni d(d£l) ,
J r  • (4.22)

Mo

where I is the node number corresponding to the position J  in the arrangement 

defined in (4.18).

The m atrix equation for the static case is stated as follows

(4.23)

where Ao contains the unknown degrees of freedom corresponding to the vector 

potential Ao, and ipo contains the unknown degrees of freedom corresponding to 

the scalar potential tp0. Their arrangement of components in Ao and ipo has been 

discussed earlier. The number n^0 corresponds to the number of nodes at which 

the vector potential Ao is to be determined, and the number n^Q corresponds to 

the number nodes at which the scalar potential Tp0 is to be determined. The ma

trix K AA G R(3̂ o x3̂ o) and 6 R(n*oXn̂ o) are symmetric and positive semi-

definite.17 The matrices K and and the column vectors F Aa and F ^ q are

derived by deleting the appropriate rows and columns in the matrices defined above 

so as to impose the essential boundary condition.

17 For piece-wise constant m aterial properties, two-point Gauss integration is used to calcu
lated the entries in the m atrix K AA and Numerical experiments show th a t no significant
improvement in accuracy is achieved with more number of Gauss points.

Find Ao 6 R(3n*oxl) and t/>0 £ r("+oxi) such that

'K * *  0 ' ’Ao' ( pA0 '
< • =

0 Af+* m
•

. i ’o ,
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4.1.3. Coulomb Gauge

To implement Coulomb gauge (3.11) we define a m atrix (p)JCAA := f <E

« ■ » )

where k is the node number corresponding to the index / ,  and I is the node number 

corresponding to the index J . The indices i and j  are the directions corresponding 

to the indices I  and J. The matrix (p)/CAA is added to m atrix to enforce the 

Coulomb gauge. Note that reduced integration18 is used to calculate the entries of 

the matrix (p)/Ca a . The matrix ^ K AA is constructed by deleting the appropriate 

row and columns in the (p)/Ca a .

4.1.3.1. Quadrature points and the choice of {3

The number of quadrature points used to integrate the entries of the matrix 

(p) K a a  decides the number of constraints imposed on the linear system of equations. 

From numerical experiments, we observe that 2 x 2 x 2  gauss integration points is 

sufficient to integrate exactly the FE matrices for the l.i.h. materials. An integration 

scheme with 2 x 2 x 2  gauss integration points to integrate the matrix is termed 

as full integration. On the contrary, an integration scheme with l x l x l  gauss 

integration points is termed as reduced integration, and consequently, the matrix is 

under-integrated. The consequence of reduced integration is a singular matrix. Each 

integration point used to evaluate the penalty matrix imposes a constraint.

Hence, if we use full integration for (p).K'AA and K ^ ,  then the number of constraints 

would equal the number of degrees of freedom, and in some cases, it is conceivable 

that the number of constraints will exceed the number of d.o.f.. Hence, if we increase 

the value of the penalty then constraints will force the solution to be locked close

18 For piece-wise constant material properties, one-point Gauss integration is used to calculated 
the entries in the m atrix  ^ K .AA.
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to zero.

To avoid the locking we implement selective reduced integration, where we use 

reduced integration for m atrix K AA and full integration for m atrix K AA. To 

avoid numerical difficulties associated with imposing the penalty, we must choose 

the penalty \> carefully. A guideline used in the selection of the penalty \> is that we 

must ensure that \> < lO^2, where p is the number of decimal digits stored in each 

computer “word.” For the DEC system, with single precision we choose \> <  104, 

and with double precision we choose j? <  107.

An alternate method to implement the penalty, is to use consistent penalty 

method (Cook, Malkus and Plesha [1989]). Here, the “constraint points,” i.e., the 

gauss integration points used for the integration of the entries in ^ K are sep

arated from the gauss integration points used to integrate the entries in K AA. An 

8-noded brick element with one “constraint point” in the middle is an example of 

a 3-D element used in the consistent penalty method. See Cook et al. [1989] for a 

more detailed overview.

4.2. Transient Problem

As a consequence of the linear-isotropic constitutive relationships (4.1) the 

potentials A  and if used in the transient problems axe related to the field quantities 

D, H, and J /  as follows:

D = -e (x )  (grad i> + ^  j  , H  =  curl A , J ,  = -<r(x) (grad V> +  •

(4.25)

4.2.1. Weak Form

Our goal is to transform (3.25) to a matrix equation. Given the combined
9 0 __

potential IIq € S q and IIq € <->o, we need to find the combined potential I I  £ S  for
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all t > 0, and for all x € ft. Using the expressions in (4.25) we obtain simplified 

expressions for the operators defined in (3.26), (3.27), and (3.28) for linear-isotropic 

materials to be as follows.

(0Sm(W,n) := ^ W A-e(x)J^gradi> +  | ^  dfl

d (  d \
+  ^  grad W^,*e(x)— f grad + — j dfi , (4.26)

W & (W ,il) : = ^ W A-cr(x )(g rad ^  + ^  dQ

+  ^  grad H^*cr(x) ^grad^ +  dQ , (4.27)

• —7~r(curlA ) dQ . (4.28)
/x(x)

Note that the arguments for ^Gm, ^Gb, and ^Gk are not the same. The linearized 

expression for Gf{W) is the same as in (3.29), hence, ^ G f(W ) C/f(W).

As the above expressions for operators ®Gm, WGb, and ^Gk  are functions of

not only II, but also also its time derivatives II  and II, it is more convenient to

construct a new operator

w Gdyn(W , n ,  f i, i i )  := (° sm( w ,  i i )  +  w & (w , n )  +  « & ( w ,  n ) , (4 .2 9 )

where the arguments of ^Gdyn explicitly indicates its dependence on II, II, II, and 

W.

Using the above expressions we transform the weak form (3.25) to the follow

ing.

^Gk(W , n )  := /  (curl W A)
J n

Given IIo(x) and n 0(x), find II  G S  V x 6 Q and t > 0 such that

(0 S * „ ( w , n , f i , f t )  =  < '»s; ( W )  v  w  e  v  ,

(4.30)
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4.2.2. Discrete Weak Form

4.2.2.1. Time discretization: Newmark method

In order to  solve the above weak form, we first discretize in time using the 

Newmark method (Hughes [1987, p. 491]). The Newmark method includes the 

trapezoidal rule as a special case. Let the unknown potential II at at time step 

t =  tn be designated by

II»(x) := n (x ,  tn) .

Also let

iln (x ) :=  il(x , tn) and &n(x) := f t(x , tn) .

Assuming that ( l l n, IIn, IInj satisfy the weak form (4.30) at time tn, i.e.,

(l)Gdyn ( w ,  n n, f in, i i n) =  W )  v w e v ,  ( 4 . 3 1 )

( • \
H n+i , n n+1, n B+xl at time fn+1 such that

(l)G*„n ( w ,  n n+1, n n+1, n n+1) =  « g f ( w )  v w  e  v  . ( 4 . 3 2 )

Let

A n n+1(x) := n n+1(x) -  n n( x ) .

Then, Newmark time-stepping algorithm defines the relationship between the two 

solutions ( n n, h n, f t n) and ( l ln+i, fl„+1, i i„ +1) to be

M ^  X
n n+, = n .+ i  +  —— —- A n .

(A W . f  0  
*

( A ^
n „ +1 =  n n  +  A i i n + i ,
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where
«r 1 . 1 -  2/3,.

+1 Af /9 9/3 ’
n+1 ^  P '4.34'

On+1

the tim e step is Afn+1 :=  tn+i — tn, and (jS,7 ) are parameters for the Newmark 

algorithm. Note that (3 — 0.25 and 7  =  0.5 corresponds to the trapezoidal rule which 

guarantee the unconditional stability and also maintain second order accuracy.

The general case, when operator ^Qdyn is a nonlinear function of A IIn+i, 

when (4.33) is substituted for 1, n n+i , n n+JJ  requires further linearization of 

operator ^ Qdyn■ However, in our case, for linear-isotropic materials, the ^Qdyn is a 

linear function of A IIn+i. The expression for ^Qdyn in terms of A IIn+1 is obtained 

by substituting (4.33) in (4.26)-(4.28). The weak form (4.30) to find the unknown 

A IIn+i a t time step in+1 can now be written as

Given ( n n, n n, n„) find A IIn+i G V such that

1 (l)r> a i r  a t t  \ 1 7m£ » (w ,A n „ +1) + — ('>56( w , A n „ +I)
( A w r / 5  ' Afn+1 f3

+ « ^ ( w , A n n + 1 )  = Wgf (W) -  (')£m(w , n n+i) — n n + i )  

v  w  e  v  .

(4.35)

An im portant assumption is that the essential boundary conditions must be satisfied 

by the initial values, i.e., n 0 € S.  In such a case, the above weak form is valid for 

every step n, in the time-stepping algorithm. Note that the solution space S, and 

hence, space V, is invariant with respect to time t.
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4.2.2.2. Matrix equation: Spatial discretization

In this section we develop the matrix equations with a global viewpoint for 

the time step n +  I, i.e., we discretize problem (4.35). The space Wh is constructed 

as before using the 8-noded first-order Lagrange isoparametric brick elements as 

done for space in the previous section, i.e., a function v  :=  {u1, • • • , u4} £ 

is represented by a set of basis functions iVfc(x), k =  1 , . . . ,X ,  as in (4.12). The 

degrees of freedom <£k are the values of the function vl at node k of the triangulation 

Th,. However, functions in space V must satisfy the essential homogeneous boundary 

condition. Therefore, we define the space Vh C V to be

Vh :=  v  £ W h v satisfies the homogeneous essential boundary

condition specified in V > .
(4.36)

The unknown function A IIn+i(x), the known function II„(x), and the weighting 

function W /,(x) are represented in terms of the basis functions as in (4.12). The 

appropriate degrees of freedom must be constrained to account for the essential 

boundary conditions. These representations are used to express the operators ®Gm, 

and ®Gf in terms of the basis functions and the degrees of freedom. In the set 

up of the matrix equations we reduce the mathematical rigor to improve readability.

To set up the final m atrix equation we arrange the degrees of freedom as 

follows. First, we arrange the degrees of freedom that correspond to A beginning 

with node 1 and ending with node X as follows.

node 1

4 ( A ) , 4 ( A )

node bC

(4.37)
pj(lx3X)
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Similarly, we arrange all the degrees of freedom that correspond to ip as follows.

dZ f,/,\i vr / j(lxX) (4.38)

Using the above arrangement, we define the following matrices for the opera

tors ^Gm, (i)Gb, Gk, and Gf defined in (4.26), (4.27), (4.28), and (3.29). Matrix 

M ** := [ M f f]  G R(3Kx3X> where

M "  “  In <*)NkNlSii  dn ’ ( 4 -3 9 )

matrix BAA := [fl^] 6 r(3 « x 3X) where

5 #  := [  a M N k N tf i j  dQ , (4.40)
n

matrix /C"4"4 := G R(3̂ * 3̂ )  where

:= Jn ^ (x ) ga.Pe"‘n(0eP9O')̂ (0(i) ^  > (4-41)

column matrix J-An+l := jjF>in+I j £ pj(3Xxi) w^ere

■̂ 7 n+l :=  /  (H x n )‘ % )  <f(fi) +  /  J ‘lV-,%) dfi , (4.42)
</0

where A: is the node number corresponding to the position I ,  and I is the node 

number corresponding to the position J  in the arrangement defined in (4.37).

Matrix M+* := [ M ^ \  G R(KxX) where

M V - = L < x ) ( 4 ' 4 3 )

matrix := Bff  G R ^ x^ ) where

s " := L  i t t  ■ (4-44)

matrix JC^  :=  IC^f G R ^ x^ ) where
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(4.45)

column m atrix T*'*'- := [ j ^ l j e  R(Xxl) where

: = ~  I  Nl d ( d V ) ~  f (J/*n) Ni d(dQ)
rfc* \  J (4.46)

— / (divD*n)iVi d(fi) ,
J n

where fc is the node number corresponding to the position I ,  and I is the node 

number corresponding to the position J  in the arrangement defined in (4.38).

Matrix M m  :=  \M f f ]  e  R(3XxX) where

M**:= L e(x)iVfcS  ^  ’ (4-47)
matrix BA* := [Bff]  6 R(aKxX) where

Bf} .= Ja<T(x)Nt ^  dn , (4.48)

matrix 1CA+ := [iCff] e  R<3XxX) where

ICff := 0 , (4.49)

where k is the node number corresponding to the position I  in the arrangement 

defined in (4.37), and I is the node number corresponding to the position J  in the 

arrangement defined in (4.38). The index i is the direction corresponding to the 

position I.  For example, if I  =  4, then the degree of freedom is d\ (A) in (4.17), 

which corresponds to A1 (i.e., the right superscript is 1), and hence i =  1.

Matrix M ^ a := [ Mf f ]  <E R(Xx3K) where

M t f  ■■= d n , (4 .50)

matrix B*A :=  [ s f f  £ r ( ^ x3^) where
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W  :=  Ja « * ^ N‘ da  •

m atrix K.'t>A := £ r ( ^ x3^J where

& u ■■= 0 ,

(4.51)

(4.52)

where k is the node number corresponding to the position I  in the arrangement 

defined in (4.38), and I is the node number corresponding to the position J  in the 

arrangement defined in (4.37). The index j  is the direction corresponding to the 

position J  in the arrangement defined in (4.37).

Using the above defined matrices, we can transform the discrete weak form 

(4.35) at each time step to the following matrix equation.

Given X, X £ R<3Kxl> and XX 6 R(Xxl), find A X +1 6
R(3»*Xl) and A^ +1 6 R(n#xl)) such ^

(A  tn+l)2 0

' M AA M A+' * B W ' K AA 0 ‘ \ /

J----- 2---
T  A t»+ l 0 + <

mM*A gipA f i iM 0 0 / k

'M * * M W
> -- i

JP'l’n+lk t M * A M W

An
—

QAA q A\()

fill>A pip

An  

. .

(4.53)
•— #i. £» *1

The column matrices An, An and ifin, i>n contain the respective degrees of freedom 

at time tn■ The column matrices AAi+i and Ai/>n+i, contain the increments to the 

vector potential and the scalar potential, respectively. The mass matrix

’ M aa M a*
M  := R ( +”i>) X (3n A+n  ̂) ) (4.54)
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is positive definite, however, the damping matrix

’ q AA QAiI>'
B :=

gipA Qllnjl
£ RU3n-A+n*)X(3nA+n+)) (4.55)

and the stiffness matrix 

K  := f j  (  (3n A +rm,) x ( 3nA ) ) (4.56)
KAA Q- 

0 0

are positive semi-definite. These matrices are obtained from their counterparts

defined above by deleting the appropriate rows and columns so as to impose the 

essential boundary conditions. The number corresponds to the number of nodes 

at which the vector potential A is to be determined, and the number n^  corresponds 

to the number nodes at which the scalar potential r{} is to be determined. The 

Coulomb gauge is enforced similar to the magnetostatic case in Section 4.1.3 on 

page 67. The matrix is added to the stiffness matrix K AA.

4.3. Time-Harmonic Problem

As a consequence of the linear-isotropic constitutive relationships (4.1) the 

potentials Ao and ifio used in the time-harmonic problems are related to the field 

quantities D 0, Ho, and J /Q as follows:

D0r =  cue(x) (gradi/>i +  A*) , D0l- = -cue(x) (g rad^r +  Ar) ,

Hr = curl Ar , Ht = curl A i , (4.57)/i(x) ’ “ * fl(x)
J for = wo’(x) (gradrpi + Ai) , J/o. =  -u a { x )  (grader +  Ar) .

4.3.1. Weak Form

Our goal is to transform (3.51) to a matrix equation. Using the expressions 

in (4.57) we obtain simplified expressions for the operators defined in (3.52)-(3.57)
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for linear-isotropic materials as follows:

(l)£mr(W, An) := uj2 j  W Ar*e(x)(gradi/'or +  A0r) dQ 
j  n

+  CJ2 f  grad W*r *e(x) (gradV'o,. +  A 0r) dfi , 
J n

(4.58)

(Z)£ m , - ( w , n 0 ) :=uj2 [  W Xi*e(x)(gradV’ot- +  A 0i) dQ 
J n

+ u 2 f  grad W ^i • e(x) (grad ipQi -f A 0t) dQ , 
j  n

(4.59)

(,)£6r(W , f l0) : = -w  / W Ar *cr(x) (grad V’o,- +  A 0t) dQJO

- u  grad W tT • cr(x) (grad ip0i +  A 0i) dQ , 
*»n

(4.60)

(° ^ t ( w , n 0 ) := u  W At-*cr(x)(gradV>or +  A0r) dQ 
J n

+ uj grad W ^ 'c r fr )  (gradV>or +  A 0r) dQ ,
«/fl

(4.61)

W ^ r ( w , n 0 ) := f  (curlW Ar) • (curlAr ) dQ , 
J n M.x )

(4.62)

(,)& i(w ,A 0) := (cucl W Ai) • -1 -y  (citrl Ai) rffl . (4.63)

The weak form (3.51) is simphfied to the following.

Find Ao £ such that

{l)Gm{W , Ao) +  « & (W , n „ )  +  « & ( W , Ao) =  « g , ( W ) , V W  € V ,
(4.64)

where the operators Qm := (l)Gmr + i^Gmi, W0b := ^Gbr +  ^ l)Gbi, Gk '■= 

^G kr + i^G ki, (l)Gf := ^ Gfr +i®Gfi = Qfr +iGfi~ The space of trial functions

: =  S .

To account for the non-homogeneous essential boundary condition, let us split
. -  . $  

the solution IIo into a known function IIq (E l̂’S  that satisfies the essential boundary
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_ N  _ _
condition and an unknown function IIo E V that satisfies the homogeneous essential

\k] M
boundary condition, i.e., IIo =  Ho +  IIo. As all the operators are linear, we can 

rewrite the above weak form as follows.

[&] _ [u]
Given n 0 6 ® S,  find f l 0 E V such that

M  (“ I fc]
w Gm( w ,  n 0 ) +  w gb( w ,  n 0) +  « & (  w ,  n 0)

[k] [A:] [k]
= w Gf ( W ) - wg m{w , n 0) - u g b(w , n Q) - w & ( w , n 0 ) , v  w  <e v  .

(4.65)

4.3.2. Discrete Weak Form

[u .

N
Following the procedure used in the previous section, we approximate the IIo

by n 0h E Vh, and thereby we limit the solution to the following discrete problem.

[k] _ M
Given n 0h E ^5 /i, find IIoh E Vb such that

(0̂ (w, nQ j  + wgb(w, nij + w&(w, n0 j
[k] [A] [k]

=  (i)S / (w )  -  wgm{w, n0j  -  wgb(w ,  n0j  -  m & (w , n0j , v  w  e  %

(4.66)

4.3.2.1. Matrix equation

Using the arrangement for matrices and the colu m n  vectors in the transient 

problem, we transform the discrete weak form (4.66) into the following matrix equa-
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tion.

Given ^  6 R'3̂ xl\  ^  6 RPSs£l)> 6 rC^xI)^ ^  ^  g r i^ x i^  

find A r e  R (3nj' xlU e  R(3n* xl^ r e  R ^ xl), a n d ^  G rC"**1), 

such that

r  -| ' A r '

rK - c j 2 (rM)  w  {{B)
Vv

* ►

- u  (rB ) iK  -  u? (fAf) A

. &  .

’ r  p A '
r

r p ip

<
«• p A

i p ip  
> *

-

-I

— uj2 (TM ) u> (XB)
f t

- u  (rB) ^ - J 2 C M )

<

%

ib1?

The “mass” matrices

r M AA TM A't>
T M  :=

and

lM  :=

rM ^A rM** 

XM AA '

£  R  ( ( 3 " X r  + rH ’r  )  X  ( 3 r l > lr  + TH>r ) )

£  R  ( (3nAf + n^{ ) X (3n^- + n Vi ) )  >

iM'i,A ‘M’W’ 

are positive definite. The “damping” matrices

’ r p A A  r p A i p "

TB  :=
r  f i i p A  r  Qipip

g  R ((3 n Ai+n^{ )x (3 n jlr+n^r ))
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and

lB  :=

i ' g A A  i  f l A i p

ifirpA

and the “stiffness” matrices

"  r  f f A A  t  f f A x p

£ p((3">lr +rHr )*(3nA{ +r^f ))  ̂ (4.71)

rK  :=

and

r f f i p A  r f f W  

' i f f A A  i f f  Aip

£  R ( ( 3 n A r  + n ^ r  ) x ( 3 n A r  +n*r))  ̂ (4-72)

lK  :=  G R((3n'4i+n^.)x(3n'*i+n^«)) (4-73)
i f f  ip A  i f f i p t p

are positive semi-definite. The above matrices are obtained by deleting the appro

priate rows and columns from the respective matrices below.

Similarly, The “mass” matrices

~tM aa tM a*'
rM  :=

and

lM  :=

rM * A TM ' H>

1M aa ' M a+

r ( ( 3 X + X ) x ( 3 K + S ) } (4.74)

R((3K+K)x(3X +K ))

m*M+A iM lH 

are positive definite. The “damping” matrices

(4.75)

TB :=

and

‘5  : =

- t q A A T g A l p ’

T g l p A rg ip ip

- i B A A i g A t p '

i f f iP A if l ip ip

R ( ( 3 X + K ) x ( 3 K + X ) )  }

r ( ( 3 K + X ) x ( 3 K + X ) )  ;

(4.76)

(4.77)

and the “stiffness” matrices

~tj£AA tjqAiP'
X  :=

r j ^ i p A  Tj^iJnir

R((3K+X)x(3X-|-iC)) (4.78)
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and
‘VC** %ICA*

*/C:= '
* **■•*/* 4 * f«*«J‘A.’"* 'A,’

j^((3K+X)x(3bC+S)) ^

are positive semi-definite. The prefix “r” indicates that the matrix is associated 

with the real part of the potentials. The prefix “i” indicates that the matrix is 

associated with imaginary part of the the potentials. The respective expressions for 

the coefficients of the matrices were defined earlier in the discussion on the matrix 

equations for the transient problem. The numbers n^r and correspond to the 

number of nodes at which the real and imaginary parts of the vector potential A 

are to be determined. The numbers n$T and n^{ correspond to the number nodes 

at which the real and imaginary parts scalar potential ip are to be determined. The 

Coulomb gauge is enforced similar to the magnetostatic case in Section 4.1.3 on 

page 67. The m atrix is added to the stiffness matrices rK AA and tK AA.
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CHAPTER 5
POST PROCESSING: THE LUMPED PARAMETER MODEL

To establish a lumped parameter model for an electromagnetic device such 

as a capacitor, it is necessary to relate the electromagnetic field quantities E and 

B, to the circuit quantities (lumped parameters) such as voltage V, current I ,  

capacitance C , inductance L, and resistance R. Moreover, it is necessary to relate 

the vector potential A and the scalar ip, to the lumped parameters. The focus of 

this chapter is to outline the necessary relations between the continuum FE solution 

and the discrete lumped parameters. We begin with an explanation of the lumped 

parameter model for the capacitor. We present the relations between the lumped 

parameters and the field quantities. We conclude this chapter with the expressions 

relating the lumped parameters to the FE matrices and solution vectors that were 

defined in Chapter 4.

In this chapter, we include discussions and expressions relating solutions for 

problems with transient excitations to its equivalent circuit parameters. For ex

ample, the expressions (5.16), (5.17), and (5.18), express resistance R , inductance 

L, and capacitance C , as a function of time t. The reader is forewarned that a 

more comprehensive study is required to explain the validity of such expressions 

for general transient excitations (i.e., for time-dependent excitations that cannot be 

expressed as a linear combination of sine and cosine functions of time).

Problems with electromagnetic devices can be, predominantly, classified into 

two categories. The first category of problems is with an input current. The voltage 

measured between the terminals of the device is used to compute the impedance of 

the device, and subsequently, the R, L, and C . The second category of problems is

82
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with an input voltage. The current flowing through the device is measured so as to

compute the impedance, and subsequently, the R, L, and C. The focus of this work

is solution to problems that belong to the second category, i.e., where a voltage is

prescribed at the terminations of the capacitor and the current is calculated from

the FE solution. The current flowing through the system is calculated using the

power stored by the electric current density J /, the displacement current density 
9D

and the magnetic induction B. The total power divided by the input voltage 

is the current flowing through the device.

A simple circuit model for the capacitor, connects the resistance R, the induc

tance L, and the capacitance C in series as done in Figure 5.1. One of the important 

assumptions in the simple circuit model is that the disturbance is propagated around 

the circuit instantaneously. This assumption is only valid if the wavelength is much 

greater than the dimension (circuit length) of the device. A rule of thumb in elec

tromagnetics is that the model is applicable to those devices whose circuit length 

and transverse cross-sections are smaller than 1 / 8th of the wavelength. In order 

to extend the applicability of the simple RLC circuit model to larger devices, we 

assume that the lumped parameters R, L, and C  are frequency dependent. A FE 

analysis computes the potentials at any given excitation frequency. From the po

tentials we calculate the R, L, and C at that frequency. Another approach is to 

use the concept of distributed capacitance, inductance and resistance. One such 

attem pt is the transmission line19 model; see e.g., Kraus [1984]. Post processing, 

i.e., obtaining the lumped parameters from a FE solution, for the transmission line 

model is beyond the scope of the present work.

19 A transmission line may be defined as a device for transm itting or guiding energy. Trans
mission line models are necessary to model waveguides, radio links, etc.
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All Frequencies

L

C

High Frequency

Figure 5.1. Equivalent Circuit Model for MLCC 

5.1. Equivalent Circuit Model for a Capacitor

A capacitor can be represented by a series combination of an ideal capacitance 

C, a resistance R, and an inductance L, as in Sarjeant [1990] and Anand [1993]. 

In the equivalent circuit model the resistance R a is due to the conductors, i.e., the 

electrodes, end terminations, etc. The leakage resistance Rp is due to the resistivity 

of the lossy dielectric material. In general Rs »  R p-

However, as shown in Figure 5.1 we could alternately dispense with Rp and R, 

and construct a model that has a single R. This resistance R  is frequency dependent.
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The impedance of the upper circuit at frequency f  = w/2/ir in Figure 5.1 is
—t

Z  = R, +  iu L  + I - ^ - Rp
uC J

However, at high frequencies we can approximate the impedance to be

Z  = Rs +  iu L  H— — . (5-1)

This is same as that shown by the lower circuit in Figure 5.1. The magnitude of the 

impedance is given by

\2 \ =
f  l  \ 2-11/2

*  +  (“ £ - = c )I J

where the resistance R  is frequency dependent; at high frequencies R ~  R s.

At low frequencies the capacitive reactance —— dominates, however, at high
(dC

frequencies the inductive term iuL  dominates. At a certain frequency called the 

self resonant frequency (s r f ), the capacitive reactance cancels the inductive term, 

and hence, the capacitor acts like a pure resistor. If the inductance L and the 

capacitance C are not dependent on frequency, then the self resonant frequency s r f  

is

s r f  = ---- \ =  . (5.2)
2 iry/LC K J

The resistance at the self resonant frequency is defined as the equivalent series 

resistance esr. In general, it is best to stay below the s r f  so as to avoid large power 

loss in the capacitor. Caution must be employed when using the capacitor above 

the s r f  where the capacitor behaves like an inductor, and therefore a very little 

current flow could result in large voltage drop across the terminals.

The esr, esl and s r f  are measured using an AC  source. The capacitor is 

excited by an AC  voltage V  at a certain frequency / .  The current is then measured. 

The impedance
- VZ - j  = Zr + iZi ,
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where Zr and Zi are the real and imaginary parts of Z. The esr is given by R  =  ZT 

at any frequency / .  The esl is calculated at a high frequency /  by

^  2t f

The typical behavior of the impedance as a function of frequency is shown in Fig

ure 5.2. A sudden drop in the impedance is observed close to the self resonant

However, the behavior of the MLCC is more complex. The distribution of

reiterate, equation (5.2) cannot be used to compute the s r f  for a MLCC.

5.2. Circuit Quantities in Terms of Electromagnetic Fields 

The lumped parameters R, L, and C for the simple RLC circuit model for a

have to “sweep” through a range of frequencies to calculate the curve in Figure 5.2. 

Unlike Figure 5.2, for a  MLCC, we expect many local minima- The expressions for 

the lumped parameters in this section can be found in the current literature, e.g., 

see Kraus [1984, p. 376].

5.2.1. Voltage

The voltage V  between two points is defined as follows.
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frequency.

current inside the capacitor depends on the frequency. Hence, the s r f  is determined 

by examining the behavior of Z  over a range on frequencies. The frequency where 

\Z\ achieves the minimum is the sr f ,  and esr = \Z\. The esl is measured as before 

by selecting a frequency /  much higher than the sr f ,  where esl = Zi/(2irf). To

capacitor axe obtained at a particular frequency. To calculate the esr, esl and s r f  

we have to follow the procedure outlined in the end of the previous section, i.e., we

(5.3)
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esr

s r f

Frequency

Figure 5.2. Impedance Zj vs frequency /  for a simple capacitor. Both 
the quantities axe plotted using a logarithmic scale.

where £  is any arbitrary path that connects the two points, and t  is the tangent to 

the path at any point x  on the path £. If the path £  is curved, then the tangent t 

changes as we move along the path; see Figure 5.3 for details.

In the presence of a battery or a generator, the electric field E  is non-conservative. 

This non-conservative field drives the current through the electromagnetic device. 

This driving force is termed as the electro motive force (e.m.f.) S. The e.m.f. is the 

integral of E  around the circuit. However, if we split the device and the generator, 

then the e.m.f. supplied to the device is the line integral of the electric field between
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the terminations of the device that connect to the generator, i.e,

S t  dC =  grad'^**t dC A *t <££ , (5.4)

where t  is the tangent to the path at any point x  on the path £ . Using circuit

theory we can show that

£ = I R + h I 1  d t + L ^ ' ( 5 -5 )

and for time harmonic fields

S = IR  + -t— -\-ujIL  ] (5.6)

see e.g., Kraus [1984],

Voltage is measured by a voltmeter. The “voltmeter reading”

VTeading :=  -  f  E *t d£ , (5.7)
J  Leads

depends of the path of the leads connecting the voltmeter to an electromagnetic 

device. The path of integration inside the electromagnetic device is represented by 

£ , and the voltmeter is connected between Points 1 and Point 2 via the path Leads. 

In Figure 5.3 a dotted line represents the path Leads.

In an electrostatic problem, E =  —grad ip. Hence, the field E  is conservative,

and

£  E *t dC , =  0

Hence, the voltmeter reading is simply the potential difference, i.e.,

^reading :=  ~  f  E • t dC , =  -  /  E *t dC =  ^  ^  , (5.8)
J  Leads J  C

•  (0where ip represents the value of the time derivative of the scalar potential at Point

i. However, for time varying fields the voltmeter reading is path dependent: VTeading
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Point 1
Curve £

Point 2

tangent t

Leads

Voltmeter

Figure 5.3. Voltage

depends on the path Leads. This is similar to the concept of “current return path” 

used to define the inductance of the device. For time varying fields

E = —grad ip — A  =>■ ^  E  • t  d£ =  — <j> A * t  d£ ,

which, in general, is not equal to zero. Hence, the voltmeter reading becomes

E*t aCreading (5.9)

If we can configure the leads such that

[ A  • t  dC =  0 ,
J  Leads
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then

Vreading '■ = ~  ^ E • t  dC , =  -  (E  +  A.) • t  dC .
•  •

But E =  —gradV’ — A, and hence,

T / / (2) */(1)'r e a d in g  ■=  V  ~  W

Mayergoyz [1993] uses different paths for the voltmeter leads to determine the elec

tromagnetic potentials A and ip.

For the MLCC problem at low frequencies, the magnetic field and consequently 

the magnetic vector potential A are much smaller than the electric field. It is 

observed from numerical experiments that at low frequencies the voltage measured 

between the electrodes is, for all practical purposes, not path dependent. However, 

at higher frequencies (above 106 Hz), the voltage measured between the electrodes 

is path dependent. But the focus of the present formulation is to solve problems 

with a prescribed input voltage Vappiied• By choice we define the voltage to be the 

difference in the scalar potential, i.e.,

Vapplied := -  J  E - t  dC = V>(2) -  ^ (1) . (5.10)

The consequence of such a choice is that the path Leads tha t connect the capacitor 

(or any other passive electromagnetic device) to the e.m.f. generator is such that

/  A «t dC =  0 .
JL ea d s

To reiterate, the above choice (to specify the voltage by using only ip) constrains 

the “current return path," i.e., the path Leads is arbitrarily fixed.

5.2.2. Current

The total current /  at a surface dVtj is defined as the surface integral of the

normal component of the current density J / ,  i.e.,

/ : =  f  J / - n  d(dO) . (5.11)
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However, if the surface dQi is enclosed within a conductor, then we can neglect the
3D

term  —— in the Ampere’s law 
ot

T 3DcurlH  =  J /  +  —  ,

and hence derive an alternate expression

I  := /  H *t dC , (5.12)

where curve £ /  encloses surface d fl i  as shown in Figure 5.4, and t  is the tangent to 

the curve £ / .  In practice, the surface is chosen to be the cross-section of the 

conductor entering the device. A more complete definition of current is obtained 

from electromagnetic power. The induced current is defined as the electromagnetic 

power divided by the applied voltage.

5.2.2.1. Lumped Parameters for the RLC Circuit Model

For a time-harmonic problem, the lumped parameters can be directly calcu

lated from the voltage and current. From the earlier discussions it is evident that
Vthe impedance of the circuit is given by Z  =  y , where the V  is the complex voltage 

and I  is the complex current. From (5.1) we can equate the real part of Z  to the 

resistance R  and the imaginary part to >L .

5.2.3. Power in Terms of Fields

The Maxwell equations can be derived based on the principle of virtual power. 

The principle of virtual power is the main tool in continuum thermodynamics, es

pecially when dealing with coupled fields. The pioneering work by Maugin [1980]20

20 Maugin [1980] uses the basic laws of electromagnetics (the G auss’s laws, Ampere’s law and 
Faraday’s law) to derive the equations for discrete charges and particles. It is followed by the 
principle of statistical averaging and virtual power to derive the equations for the continuum. It 
is here that the concept of electromagnetic stress tensor, the electromagnetic momentum, and 
Poynting vector are useful. Such an approach accounts for finite deformations of the volume. 
Discussion along these lines is beyond the scope of the present work. The reader is referred to 
Eringen and Maugin [1990] for details.
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normal dClr
conductor'

normal n

Zoom

tangent t

Figure 5.4. Current

explains the use of this principle to derive equations that model the coupling be

tween electrical, mechanical and thermal systems. The approach followed in this 

work derives the weak form for the FE solution from Maxwell equations. An alter

nate approach is to derive the weak from the expression of electromagnetic power. 

In the approach presented here, the definition of power is useful to relate the field 

quantities and the potentials to the lumped parameters. The different parts of 

electromagnetic power stored in a volume Cl are defined below. The electric power

_ f  rE dD __
:= JR* Jo i r , S E d a ’
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and for linear isotropic material we have

m 1 f  dD „  rn 
" E := 2 Jn ' i r ' E  ^  • (5.13)

The magnetic power
f  f0  dB

W r ’/„ T T - m i s l

and for linear isotropic material we have

v H ~  \  L  d n  .2 JR dt (5.14)

The resistive power

and for linear isotropic material we have

(5.15)

In an electromagnetic system with no thermal and mechanical interactions, the 

total power in the volume fi is conserved in accordance with Poynting’s theorem 

(Wangsness [1986, p. 357]) where

r dD r dB t r
-  /  —  • E d S l -  /  — ‘H d fi =  /  J ,* E d f i  +  /  E x H  d(dQ) ,

Jn dt Jn dt Jo Jan

S := E  x H  is the Poynting vector. The Poynting vector represents the power flux, 

i.e., the instantaneous flow of energy, and points in the direction of energy flow. 

The surface (5Q) encloses the volume Q. For the capacitor problem we neglect any 

loss due to radiation. Hence, the driving power from the generator is split into the 

power loss due to a resistance, power stored due to the displacement current, and 

the power stored due to the magnetic induction.
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5.2.3.1. Lumped parameters

To obtain the lumped parameters from the above definitions of power, it is nec

essary to obtain the equivalent expressions for power in the circuit model. Consider 

a RLC circuit model for high frequencies in Figure 5.1, where the resistance R, the 

inductance L and the capacitance C are connected in series. Let V  be the voltage

applied and I  be the current. From circuit analysis we know that the resistive power
• 1 _  _9 , . , . , 1  ̂ _dZ° , , t . 1  (11̂  .
is - R I  , the inductive power is —L l — , and the capacitive power is —CV  ——. The 

2 2 dt 2 dt
applied voltage V  depends on the configuration of the path Leads (see Section 5.2.1 

on page 86). Relating the powers stored in the circuit to the powers in terms of the 

field quantities in (5.13), (5.14), and (5.15), we obtain the following. The resistance 

R  is
o-p f  J  t  • E

(*•!«)

capacitance C is

o-p /
n  — B ~  In dt______  C'i 17'i

dV  ~  dV  ’  ̂ '— V — V  
dt dt

and inductance L is
[  ^ - h  da

* *  a 1
In the above expressions we neglect the contribution to the powers outside the 

volume a .

5.2.4. Power and the Lumped Parameters in Terms of Potentials

The different powers in the electromagnetic device can be represented in terms 

of potentials. To do so we limit our discussions to time harmonic problems. Con

sider a  device represented by the volume Q in Figure 5.5. If the applied voltage 

between surface (d a ) ^  and (d a is represented by the complex quantity V, and
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the induced current is represented by / ,  the net power in the system is given by

V  := V F  = Z I 2 = I 2 (R  +  iujL + t V )  - r5.19')
v tu>C )

where I* is the complex conjugate of 7, and I 2 :=  I  7*. The equivalent resis

tance, inductance and capacitance are represented by R, L, and C, respectively. As 

explained earlier, we define the voltage V  :=  —iu>gra.dip. The induced current is 

measured to be

= <5-20>

Hence, the power in the volume 0. in Figure 5.5 is given by

V  — VI* =  J  icugradi^ • J* dCt , (5-21)

where J  := J /  -f icuD; see Morweiser and Meunier [1994] for details.

Relating (5.20) to (5.21) and using E  =  —iu;grad tp — iu;A  Morweiser and 

Meunier [1994] derives the following expressions for the lumped parameters:

R I 2 = Re j /  6I.In

± - I 2 = —Im { /
u>C I  in

IIM

Re { 1  kLIn

where the current

(5.23)

(5.24)

i* =  £ .V 2
The symbols Re  {•} and Im  {•} indicate the real and imaginary parts of the 

quantity in the brackets, e.g., Re j / j  =  IT and Im  j / j  =  7t-

The expression for power in (5.22), (5.23), and (5.24) can be obtained from 

(5.16), (5.17), and (5.18) using Maxwell equations. For example, the integral

Re | j T b •#•< *«} =  Re j ^ A * 7 * d f i J + R e  A x H* d (d ft) j ,
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n

Current

Figure 5.5. Flow of current through a volume 0 . A voltage is imposed 
at surfaces and There is no current flowing out of the
other four sides, i.e., J*n =  0 on the other four surfaces.

and hence, if the surface (dft) is sufficiently far away from the center of the problem, 

then

f  B 'H *  dtl a  f  A* J* dSl .
Jn J n

The expressions in terms of the potentials have an advantage depending upon the 

type of the problem and the excitation frequency. For example, in a circuit with the 

electric current much larger than the displacement current, the integral

Re A -J* d f lj

only needs to be computed in the conductor.
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5.3. Circuit Quantities from the FE Solution

In this section, the circuit quantities are expressed in terms of the finite element 

solution for the potentials A and ip. Recall that the lumped parameters R , L, and 

C were defined in (5.16), (5.17), and (5.18). For time-harmonic problems simplified 

expressions were obtained for the lumped parameters in (5.22), (5.23), and (5.24).

5.3.1. Static Problem

For an electrostatic problem (A =  0), the voltage V  between Node i and Node 

j in the finite element mesh is defined to be

V : = k ~ k -

There is no current inside the confines of the boundary fi for an electrostatic prob

lem. In the static problem, the power is zero, and hence, we calculate the lumped 

parameters in terms of energies. The electric energy is

where the solution vector { fj,Q j  and the “mass” m atrix [ M** j are as defined in 

(4.23). The capacitive energy in the circuit is equal to jC V 2. The capacitance C is 

defined to be

(5.25)

For a magnetostatic problem, a current J ao is specified on the domain fi. The 

current is calculated as in (5.11), by replacing J /  by J ao. The magnetic energy is

^ | n B -H d f i  =  { A } T [ ^ ] { A }  •
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The inductive energy in the circuit is equal to \ L I 2. The inductance L is defined 

to be

(5.26)

5.3.2. Transient Problem

In the transient problem we calculate the lumped parameters at each time 

step. Hence, e.g., the resistance can change with time.

At time t =  tn, the electric field E is given by

f X
(5.27)

f  •  X

An X '
E(x, fn) =  — [V*1V] < >-[N}< >

. i ’n , 0

and the magnetic field B is given by

B (x ,tn) =  [V x N]
An

in
(5.28)

The finite element solution vectors An  and ifrn axe as defined in (4.53). The matrices 

[V'JV], [N ], and [V x IV] are defined in Remark 5.1.

Remark 5.1. Recall that in (4.37) the value of the vector potential A at time

t  =  tn is arranged in a column vector. Similarly, in (4.38) the value of the scalar

potential ^  at time t = tn is arranged in a column vector. Corresponding to such an
.sc

arrangement we define the matrix [iV] 6 R x as follows (X represents the number 

of nodes in the finite element mesh).

[N] :=

IVi 0 0
0 Nr 0
0 0 JVX
0 0 0

N 2 0 0
0 N 2 0
0 0 N 2
0 0 0

X * 0 0
0 % 0
0 0 %
0 0 0
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0 0 0
0 0 0
0 0 0

N i N 2 N3

0
0
0

NX
(5.29)

where Nx to iV^ are the basis functions corresponding to the X nodes in the mesh. 

The three components of the vector potential and one component of the scalar 

potential at a point x  and time t = tn are given by

' Ax(x, f„) 
A2(x, tn) 
A3(x, in)

. V’Cxjin) .

= [iV]

I in

4X1 (5.30)

where

e  R4Xxl

is the solution to the finite element problem; there are four degrees of freedom per 

node, and X nodes.

Corresponding to the curl A we define a matrix [V x N] E R 

[V x N] :=

3X4X as follows.
o1

dNi
dx3

dN x
d x2

. . . 0 dN K
dx3 d x2

dN x
dx3

0
dN x 
d x1

. . .  | 3N k

dx3
0 ,

d x 1

dN x
dx2

dN x 
d x1

0 . . .  | dN x  
dx2 d x1

0 |

••• | 0 0 0 •• o
 

__
_1

••• | 0 0 0 ••• 0

••• I 0 0 0 •• 0

(5.31)
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so that

' A ^x, t„) ’ f X ’___1 A r,. j .  \ —  r-7  . .
x .u x x  h n )  —  V a .  < A2(x,Zn) II <1 X % .

► — t v l
G K" * . (5.32)

. A3(x ,tn) .

Corresponding to the div A we define a m atrix [V*iV] G Rlx4 *̂ as follows. 

[V x N] :=

dN x dN x dN t , , d N ^  dN\
d x1 d x2 dx3

'X
d x 1 d x2 dx3 0 0 ••• 0

(5.33)

so that
' Ax(x, tn) '

f  •  X

Ax
A2(x, tn) ► =  [V*W] ■ G R . (5.34)

.  ^ 3(X> *n) .
.  X  .

div A (x, tn) =  V*

Corresponding to the grad tp we define a m atrix [VN] € r 3x4^  as follows.

[VN\ :=

0 0 • • 0
dNi aArs i
d x1 d x1

0 0 • • 0
dNi
d x2

aivs
d x 2

0 0 • • 0
dNi d N *
dx2 d x2 .

so that

grad ̂ (x , tn) =  [VJV]
A

in

e R3 x 1

(5.35)

(5.36)

We extend the above matrix representation as follows. We express the matrix 

[JV] G R4x4K in terms of two matrices [NA] G R3x3^  and [iVy,] G Rlx^ ,

[W] =: Na 0 
0 W* G R4Xx4X
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where

and

'Nx 0 0 1 n 2 0 0 1 . . .  1
n k 0 0r -m ■w y

:= 0 N\ 0 i 0 n 2 0 1 . . .  1 0 0
0 0 Nr \ 0 0 N 2 1 . . .  1 0 0

[N<] := [i^x n 2 n 3 ••• %

The spatial derivatives of the potentials A and ^  can be expressed in terms of 

matrices [JNTa] G R3x3^  and [N ,̂\ G Rlx^  as follows.

Corresponding to the curl A we define a matrix [V x IV̂ ] G R3x3^  to be

[V x IV4 ] :=

0

1

dN x
dx3

dNr ,
d x2 1|

• 1 0
1

d N *
dx3

1— 
— 

%
 CN

5 
^

d N x
d x3 0 dNr , 

d x1 1I

,
1 d x3I

0
dN K 
d x 1

dNr
d x2

dNx
d x 1

1
0 | •• , d N *  

1 d x2
dN K
d x1

0

(5.37)

so that

curl A (x, tn) =  V x A2(x , tn) 
A3(x , tn) t

= [VxWj]{X} e R3 x 1 (5.38)

Corresponding to the div A we define a matrix [V'lVx] G Rlx3^  to be

[V -N a] := 

dNr dNx dN x
■ d x 1 dx2 dx3

d N ^  d N ^  d N .
dx1 dx2 d x3

(5.39)
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so that

div A (x, in) =  V*
' A1(x, tn) ' 
A 2(x ,tn) =  [ v - A y { X }  6 R - (5.40)

Corresponding to the gradV» we define a matrix £ R3*3^  tQ be

[ViV*] :=

’ dN x d N x  1
d x1 d x 1
dN x d N x
d x2 dx2
dN i d N x

. dx2 d x2 .

(5.41)

so that

grad rp(x, fn) =  [VJV*] { } e  R3xl (5.42)

The m atrix representation that uses [iV ]̂ £ R3x3^  and [iV̂ ] £ Rlx^  is con

venient to represent portions of the mass, damping, and stiffness matrices. See 

Chapter 6 for details. I

To calculate the voltage between two nodes in the finite element mesh, we must 

first establish a path between the 2 nodes. In the present formulation we choose to 

construct a path by using piecewise straight lines. Moreover, we choose to integrate 

the voltage element by element. Hence, we choose a straight line from a node to its 

adjoining node, and repeat this process till we reach the desired node. An example 

is shown in Figure 5.6, where we draw a line between the node i and node I via node 

j  and node k. To calculate the voltage drop between node i and node I, we integrate 

the electric field E as in (5.3) in the 3 segments separately and then sum it up; the 

expression for E  at any position x  is given by (5.27). The present implementation 

does not allow a single straight line connecting node i to node I. Hence, voltage Vu
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between node i and node I is given by

/•node jrnode j  „ m ode k m ode I
V<{: = -  E » t dC -  /  E - t  dC -  /  E *t dC ,

Jnode t Jnode j  Jnode k
(5.43)

i.e., a sum of integrals over three straight line segments. For the above integral, we 

propose to construct the leads of the voltmeter that reads the voltage such that the 

voltage is only the integral of the scalar potential, i.e., electric field E in the above 

expression can be given by

'X
- [ V 'N ]

4>n

Note that for a voltage driven problem, the voltage is “known” quantity specified 

by the user as boundary conditions to the FE problem.

The current I  at time t = tn is calculated as in (5.11), where the current 

density J /  is

' X
J/( (x >*n) =  0-(x)E(x,tn) =  - 0-(x)[V*iV] -  <X ) [N] (5.44)

The electric power Ve  at time t =  tn is 

V sitn )  := r

where the solution vector and the “mass” matrix [ /A  are as defined in (4.53). The 

capacitance C is defined to be

/ • •  >

A n

T
’ M AA M a*' 'X'

> <M
. i>n ,

m *a m **
. i n  .

C :=

(  • •  V

A>
T

'M AA M A+ ' 'X'
< ► < >

. $n , M * a M 'h>

dV
~1~V  dt (5.45)
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node i

npde 7

node k

node I

Figure 5.6. Path to calculate the voltage 

The resistive power V j  at time t =  tn is

* > * .)  =- j

/  • % 
A n

<

T

►

h j

Q A A  gAr/i  

Qt!>A Qitnl>

-i /  1 V

An
< ►*

where the solution vector and the “damping” m atrix J B 

The resistance R  is defined to be

are as defined in

/ • v
An

T
' Q A A  gArl>' f  *— 

An
i » < >

•

. V’n .

The magnetic power V h at time t =  fn is

:= ^

/  *• >
An

T
' I C A A  O '

•

A n
> <

• •

. V 'n  . 0  0
. i n  .
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where the solution, vector and the “stiffness” matrix \̂ 1C J  are as defined in (4.53). 

The inductance L  is defined to be

L :=

/  •• \
A n

T
■k a a 0 ‘

4

' X '
M

. .
0 0

'--
--

---
s

dt (5.47)

5.3.3. Time Harmonic Problem

The lumped parameters involve both the real and imaginary parts of the so

lution. The electric field E  is given by

E(x) — Er -f- iE i (5.48)

’ A i ' [ A ] ’ A t ' ’ A-
uj[V-N] - « +  uj [iV] < V -ia;[V*iV] - > — iu> [iV] <

. fa . . o J . f a  , 0

and the magnetic field B is given by

B (x) =  B r +  fB, =  [V x N] <
’ A t ' f A i

< > +  i [V X N\ < .
. f a  . . f a .

(5.49)

The finite element solution vectors At, Ai, ifir, and V>i are as defined in (4.67).

The voltage for the time harmonic problem is calculated similar to the transient 

problem presented in the previous section with expression (5.48) for the electric field. 

Hence, the voltage V  has a real component Vr and an imaginary component Vi, i.e.,

V  — Vr +  iV{. The magnitude of the voltage is \V\ = \jv ?  +  V?. The current I  is 

calculated as in (5.11), where the current density J /  is

J /(x )  =  J / r +  iJ/i (5.50)

’ A i ' ’ A i '

<r(x)a; [V • N] < - + cr(x)u/ [iV] <
. f a  . . o ,
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[ A I ' A '
a-(x)iw [V • N ] « > — a(x)iw  [IV] <

. A  J n

The current I  has a real component IT and an imaginary component i.e., I  =

IT +  Hi- The magnitude of the current is |/ |  =  y  I f  +  If.

The electric power V e is

Ve  ■■=
2 [ A )  I 'M * *  rM * * J { A )  * [ A \  l*M *A iM H>J [ A

where the solution vector and the “mass” matrix [M  are as defined in (4.67). The 

capacitance C is defined to be

' A ' T
~ T  M aa rM A't>' ’ A ' l  , ' A ' T

~'M aa 'M m '
< ► < ► <

. A  . tM * a . A  .

2
. A . iM * A

uj\V\2

The resistive power V j  is

(5.51)

A

A

where the solution vector and the “damping” matrix [ s ]  are as defined in (4.67). 

The resistance R  is defined to be
N3IcII£

T ~ t q A A  r g A i l ) ' ' A ' 1 2 'A-' T ' i j ^ A A  i g A i p '

> < > <

I A  .
r g ' H ' . A  . 2 . A .

(5.52)

The magnetic power Vfj is

vtt -  JO-
' A ' T ' r ICAA O' ' A ' l ' A ' T

O' ' A i '
< > < r + oH > < >

. A  , 1

o 0
1 . A  .

2
. A  . 1 o 0

1 . A  .

where the solution vector and the “stiffness” matrix [ B ] are as defined in (4.67). 

The inductance L is defined to be

(5.53)
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Note that similar expressions for the lumped parameters in (5.22), (5.23), and (5.24) 

can be be obtained in terms of the FE matrices and the solution vectors.
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CHAPTER 6 
SCALING: CHANGING THE UNIT SYSTEM

Maxwell equations (2.1) to (2.4) can be expressed in many unit systems. 

Maxwell equations in some of the commonly used unit systems are presented in 

Table 6.1. The choice of the unit system depends on the type of application. Our 

choice until now has been the SI system of units. In this chapter, we propose a new 

generalized unit system based on a multiple-scale technique.

In the past, much of the FE analysis was done by solving uncoupled electro

magnetic problems, where the problems to determine the electric and the magnetic 

fields were solved separately. The decoupled formulation neglects the effects of eddy 

currents. The reader is forewarned that the multiple scale technique has little or 

no effect on the solution to decoupled electromagnetic problems. However, the in

creased operating frequencies (109 H z and higher) demand a coupled solution. The

coupled electromagnetic solution is an interaction between the electric current and 
e

the electric and the magnetic fields. For miniature devices at the frequency of inter

est, in the S I  unit system, the numerical values of the terms related to the electric 

current dominates those that are related to the other physical processes. As the 

electric current is only present inside the conductor, the terms of the FE matrix 

inside the conductor are much larger than those outside the conductor. Hence, a 

large condition number21 of the matrix in the ensuing FE solution. This leads to 

numerical ill-conditioning, and often makes analysis impossible (see e.g., Morweiser 

et al. [1994]). In the past, researchers have suggested the use of scaling. MacNeal

21 Condition number is defined using the 2-norm, i.e., the ratio of the largest to the smallest 
singular (eigen) value.

108
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[1989] suggest the use of a VOMS (Voltage Ohm Meters Second) unit system. How

ever, unlike the proposed generalized unit system, the VOMS unit system cannot 

be modified to account for a change in the excitation frequency and the material 

properties. The use of the generalized unit system leads to an “optimal” condition 

number of the ensuing matrices.

The new multiple scale technique allows the flexibility to choose an effective 

interaction between the different physical processes. An appropriate choice of the 

scaling parameter reduces the condition number and allows an accurate numerical 

solution. The technique is based on the physics of the electromagnetic problem. We 

begin by transforming Maxwell equations to a generalized unit system where the 

electromagnetic quantities are non-dimensionalized: The quantities c, e0, and fi0 in 

the constitutive laws and Maxwell equations are eliminated. The physical meaning 

and the numerical values of the electric and magnetic field quantities in the gen

eralized unit system depends on two scaling parameters. A suitable choice of the 

scaling parameters shifts the focus of the problem away from the dominating effect 

of the conductors, and as a consequence, reduces the condition number and signif

icantly improves the accuracy. The scaled Maxwell equations are more convenient 

for problem formulation and subsequent mathematical analysis.

The transformation between the rationalized CGS  unit system to the generalized 

system for the electromagnetic quantities are represented as follows.

GBND =  p D RCGSD , 
GBNH  =  /3h rcgsH  ,
G E N  T  __  O  R C G S  TJ /  — Pjj J /  )

and

GBNx = 6

GBNE =  0  RCGSE
G B N J J  _  p  R C G S g

G™ P f  =  /3p KCQSP f  ,

GBNi = p  aCGS* ,

G B N F  —  R C G S  p

G B N p  _  p  R C G S p

GENM  =  /3m rcgsM  , (6.1)

GEN,m ass  =  /3m RCGSm ass ,

(6 .2 )
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where the quantities with left superscript RC G S  are in the rationalized C G S  sys

tem and the quantities with left superscript G E N  are in the generalized, system. 

The multiplicative factors 0 D, ■ ■ ■, /3P axe arbitrary dimensional constants that are 

to be determined using dimensional analysis. However, the twelve multiplicative 

factors listed above are not independent; they axe related to each other via Maxwell 

equations (gives four relations), constitutive laws (gives four relations), the force 

equation (gives two relations), and Newton’s law (gives one relation). There are 

total of 4 + 44-2 +  1 = 11  relations, and twelve unknowns. Hence, if we fix values for 

two out of the twelve multiplicative factors, the remaining ten multiplicative factors 

can be determined. The equations in the rationalized C G S  units are as follows: 

The four Maxwell equations

1 dB
+  curlE  =  0 ,

c at

div D — pf =  0 ,

d D  1— x r  + -curl H ----- J f  =  J a ,
C/i c c

divB  =  0 ,

the two constitutive laws

D =  E +  P  ,

H =  B - M ,

the force equation

f =  pfE  4— J /  x B , c

and the Newton’s law

F #*=  m x ,
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where all the quantities in the above equations are in the rationalized CG S  unit

system. The symbols f, F, m, and x represent the force per unit volume, force,

mass and acceleration, respectively. The equations in the generalized unit system

are similar, except the factor -  is omitted; see Table 6.1. The above equations are
c

compared in terms of dimensions to the equivalent equations in the generalized unit 

system to obtain the following: Four relations from Maxwell equations, i.e.,

El B = I E s .L  =  I
f l / -  c '  0 „ 0 ,  c '

ElL - I  L b
0 . 0 ,  c ’ 0 / -  •

four relations from the constitutive laws, i.e.,

_  i i l L - i
P o ~  ' A, ’

-  1 _  I
Pb ’ P* ’

two relations from the force equation, i.e.,

(6.3)

(6.4)

| . M .  =  ^  . (6-S)

and one relation from Newton’s law, i.e.,

f t. = • (6-6)

As mentioned above, there are twelve multiplicative factors and eleven rela

tions. Hence, we can write the ten multiplicative factors in terms of the remaining 

two. The choice is arbitrary. However, the structure of Maxwell equations do not 

perm it the choice of /3t independent of /3x. In this work we choose f3p and /3X to be 

independent, and express the remaining ten multiplicative factors in terms of j3F and 

(3X. The motivation for the choice is as follows. To preserve the physical meaning 

of force during the transformation, the choice of j3p to be independent proves to
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be convenient. As the geometric dimensions of the device can be easily observed, 

the choice of 0 x to be independent proves to be convenient when deciding the value 

of the scaling parameter. The ten remaining multiplicative factors are expressed in 

terms of two multiplicative factors 0F and 0 X as follows:

PB = Pd =  Pp =  PB =  Ph = Pu  =
_

0  = $ L  
Pp PI  
Pt =  c P, ,

0  = - ^ L
Pj c 01 ’

Pm =  c 2 Pp P ,  ■

p ,  ’

(6.7)

The relations between the quantities in each of the unit systems axe given in Ta

ble 6.2. The multiplicative factors for the material properties e, fi and a axe obtained 

from the relations

E =  e D ,  H  =  1/p  B , J f  = ctE  .

Factors for the current I  and the voltage V  are obtained from the relations

I = [  J /* n  d(9fi) , and V = [  E * t dC .
J(an)i Jc

The relations for the lumped parameters, i.e., the resistance R, the inductance L, 

and the capacitance C are obtained from

dV

R - V  L — —  C - ^ -I  ' d / ’ I  '
dt

These relations remain unchanged in the rationalized CG S  and the generalized unit 

system.

To relate the numerical values of the quantities in the generalized system to 

that in the other systems we define the numerical (dimensionless) multiplicative
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factor a D to be
n Generalized units

P d  = '■  a o RC G S units

and similarly the remaining eleven multiplicative factors ctB, ■ ■ ■, a F. We obtain the 

values for the remaining numerical multiplicative factors in terms of ctp and a x, 

where
Generalized dyne

and
n Generalized m eter
p =: a  ------------;-------------  .

r r centimeter

Using a F and a x in (6.7), we obtain a conversion of the numerical values between

the unit systems; the conversion between the most useful quantities are listed in

Table 6.3 and Table 6.4. The conversion between the other unit systems has been

previously discussed in Srinivas [1992]. The universal constants are the speed of

light in vacuum c =  2.99792458 x lO10 cm /s, the permittivity of free space eo =

1 / (3 6 7 t )  x 10~9 S I  un its, and the permeability of free space f i 0 =  47r x  10-7 S I  units.

Remark 6.1. The scaling factor a F does not scale the matrices in the FE so

lution. This is because the factor a F appears with equal powers on all the terms 

involved in the Maxwell equations. The scaling factor a F simply cancels out in 

the ensuing FE formulation. Hence, a simplification used in the formulation for 

capacitors is to fix

1 1 " ' (6-8)(8, := 1 ,

and obtain all the multiplicative factors in terms of /3x. Such a transformation 

preserves the physical meaning of the force in the generalized unit system to be 

same as in other systems. The relations between the quantities in each of the unit 

systems is given in Table 6.2 with f3p =  1.
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The consequence of (6.8) is

I OL„ =  1 . 1 / f i  O '|______ ^____  | \y.z)

i.e., 1 dyne :=  1 GEt*dyne. To obtain the numerical scaling factors for the other 

quantities in terms of ax, set a F =  1 in Table 6.3 and Table 6.4. I

6.1. Scaling the Matrix Equations

In the preceding sections, the final matrix equations obtained via the finite 

element formulation are linear equations of the form

A d  = b , (6.10)

where A  6 Rnxn is a non-singular matrix, b G RnXl is the right-hand side, and d E 

RnXl is the solution. The condition number of the matrix A  decides the numerical 

accuracy of the solution b. In this section we examine the effects of the condition 

number on the solution for the method of “Gauss Elimination.” We also present a 

method of “scaling” or “pre-conditioning” to alleviate the effects of poor condition 

numbers. Though we choose the method of “Gauss Elimination” to demonstrate 

the effects of scaling, similar comments are applicable to other solution methods.

To begin with, we describe, in brief, the effects of scaling on the solution to a 

system of linear equations. We present a procedure to scale the m atrix equations 

from a numerical standpoint. Lack of a method to choose the scaling coefficients is 

its major shortcoming. We then present a procedure to scale the m atrix equations 

by changing the unit system used in Maxwell equations, i.e., by changing (3x. Such 

an approach is motivated by the “physics” of the problem, and hence, proves to be 

convenient.
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Table 6.1. Maxwell equations in the different unit systems. The 
symbol f represents the electromagnetic force per unit volume, i.e., 
the electromagnetic force density

U n it S y stem D, H M axw ell eq u a tio n s

C G S esu D =  E +  4ttP  

H  =  c2B -  4ttM

3D
div D =  4irp , curl H  =  47r J  t +  ——

dB
div B = 0, curl E  +  -5— = 0

at

C G S emu D =  -^-E +  4irP 
cz

H  =  B — 47tM

3Ddiv D =  47Tp,, curl H  = 4 t  J  * +  ——
3B m

div B =  0, curl E +  = 0
at

C G S  Gaussian 

(unrationalized)

D =  E +  4t P  

H  =  B — 4xM

r, . . „  h .  1d ivD  =  47rp curlH  =  — J f -----—
1 c c at

1 dB
div B =  0, curl E  H----- — =  0

c at

f =  p fE  H— J f  x B 
c

CG S  Heaviside-Lorentz 

(rationalized)

D = E +  P  

H = B - M

,. I t I  1 ,  13Ddiv D = p., c u r l H = - J / - | -----—
’ c c at

1 dB
div B =  0, curl E  -1-----— =  0

c at

f  =  p fE  -j— J f  x B 
c

S I  system D =  e0E  + P

H  =  — B -  M
Mo

_  , _T T 3DdivD  =  p., cu rlH  =  J /  H— —
at

3B
div B =  0, curl E  -f -5— =  0

at
f =  p fE  -j- J f  x B

Generalized system D =  E +  P  

H  =  B -  M

3Ddiv D =  p7, curl H  =  J /  +  —

3B
div B =  0, curl E  +  -5— =  0

at
f =  p fE  +  J f  x B
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Table 6.2. Conversion of symbols in equations.

1

R atio n a lized  C G S G aussian  CG S S I Generalized

RCGS^ 0G5q V & SI? / v ^ U V . J F , )  '■” «

R C G S p
c g s D / v ^ F ^ “ D A / i / ^  ° “ D

R CGS|£
CGSE / v /4 ^ V ^ o SIE A / i / A  ° E“ E

RCGS CGSJ / ^ SIJ //v /io c 0 l l \ I K m" h
RCGSp CGSP ,V & S1pf / V *
R C G S g CGSH / v ^7T v ^ SIH e j J F r  " " H

R C G S g
CGSB / V ^ 7 T v/l/Mo siB p j I p ,  ° " b

RCGSM CGSM \ / 4 7 r V ^ SIM A A / S ’ ” " M

R C G S p CGSP ^ SIP / v ^ a a / a  “ n p

RCGScc CGSx SIs ° ” V A

RCGS^ CGS^ S1t “ » i / ( < A )

KCG5mass CGSmass Slmass ™ m W ( c 1A A )

RCGS jp CGSp sip
° " F / d K

R C G S ^ c g s £
SIe / e 0

G E N  ^

R C G S H1 CGSfl slp/fio G  B N / i

KCGŜ 4 tT CGS£7 sW eo C/3X GBN£7

R C G S  J V ^ cgsi Sli / V * c / v ^ ;  g b n /

R C G S y CGSV/y/bT V * 51V 1 l y f c « " V

R C G S ^ f 4 IT  CGSC slC/eo amc/pa
R C G S £ CGSL / ( 4 i r ) e 0 SIL azi* L / ( c?/3x)

R C G S CGS# / ( 4 i r ) e 0 SIf l a™ R/c
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Table 6.3. Conversion of numerical values.

R atio n a lized G aussian S I Generalized
CG S CG S

9 1 statcoulomb
1

a/4 tt
statcoulomb

io-9
3 y/kK

coulomb a * y / ^ GBN coulomb

D
statvolt

y/^ir
statvolt 1(T5 coulombs y/*7 GB«volt

cm cm (3-\/4br) m 2 GBNm

E
statvolt

cm
y/4tf

statvolt
cm 3 x 104V ^

volts
m

y/a p GBSvolt
GBNm

T,
statampere 1 statampere  ̂ y in - s ampere y/a p GBN ampere

(cm)2 y/4or (cm)2
/--- X 1U

Zy/^K m 2 3a 2 x IO10 ( GBNm )2

Pf
statcoulomb statcoulomb  ̂ y in*3 coulomb y/a p GBN coulomb

(cm)3 a/47T (cm)3
~ A X U

Zy/ktc m3 a 2 ( GBNm )3

H 1 oersted y/^ir oersted
103 ampere—turns  

y/Air m
yf^P GBNoersted

B 1 gauss y/kir gauss y/ArlO 4 tesla y/ot-p
a .

GBN gauss

M 1 gauss
1

y/VH
gauss

103 
a /4 7 t

amperes
m

y/a p GBNgauss

D statcoulomb 1 statcoulomb

in1O

coulomb y/a p GBN coulomb
r

(cm)2 y /\n (cm)2 Zy/iir m2 ( GBNm )2

X 1 cm 1 cm IO"2 m “ x GBNm

t 1 s 1 s 1 s 3a* x IO10 gbn5

mass 1 gm 1 gm IO"3 kg 9axa F X 1020 GB*gm

F 1 dyne 1 dyne IO"5 newton ap GBltdyne

1 RC G S units 1 CGS units
1

S I  units 1 GBUunits
47r x 9 x 109

V- 1RC G S units 1 CGS units 4tt x IO-7 S I  units 1 GBt* units

1 R C G S units
1

CGS units
1

S I  units
1

GZl*units
47T 47r x 9 x 109 3a* x IO10
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Table 6.4. Conversion of numerical values (continued).

R atio n a lized
C G S

G aussian
CG S

S I Generalized

I 1 statampere
1

- j =  statampere 
V47T

IO"9
— -== ampere 
3v47t

G B N ____________

3 x IO10 ampere

V 1 statvolt \/47r statvolt x 102 volt G™volt

c 1 sta tfarad -— sta tfa ra d  
4 x 10 11 farad  

9(47r)
a x GBNfa ra d

L 1 stathenry 47t stathenry 9(47t) x 1011 henry 9ar x IO20 GBNhenry

R 1 statohm 47r statohm 9(47t) x 10u  ohm 3 x IO10 G™ohm

6.1.1. Ill-conditioned Matrices in Electromagnetics

The condition number of the finite element matrices are related to the follow

ing:

1. G eo m etric  dim ensions of the elements that comprise the finite element 

model is critical to the condition number of the matrices. The main reasons for 

geometric ill-conditioning is poor aspect ratio,22 e.g., extremely thin electrodes.

2. Large change in m ateria l p ro p e rtie s , in particular conductivity, contributes 

more towards ill-conditioning than geometric ill-conditioning. For example, in 

passive electromagnetic devices a mix between conductors and non-conductors 

leads to a jump in conductivity, and hence, ill-conditioning.

22 Aspect ratio is defined as ratio between the largest edge and the smallest edge of an element.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

119

A conventional method to alleviate ill-conditioning is to use a Coulomb gauge, i.e., 

impose a constraint div A =  0 in the volume fi. However, the penalty term  due to 

the Coulomb gauge could over constrain the shape functions, and thereby result in 

a less accurate solution. Our approach of changing the unit system, and thereby 

scaling the matrices, try  to improve the condition number of the matrices even in the 

ungauged problem. However, this method of scaling is also applicable to a solution 

with Coulomb or algebraic gauge.

6.1.2. Accuracy and Error Estimation

To assess the roundoff errors that occur in the solution to the m atrix equation 

A d = b, we consider an “ideal” situation. We neglect the roundoff errors in the 

entire solution process, except while storing the matrices.23 Let f l ( A ) : = A Jr E b e  

the non-singular m atrix that is stored in the computer. The m atrix E  £ RnXn is 

the roundoff error. The solution to the matrix equation

(A + E)  d = b,

is given by d € RnXn. The relative error (accuracy) of the solution is related to the 

difference between the computed solution d and the exact solution d, and is given 

by
\ \ d ~ d \ \

M il  '

See Remark 6.2 for the definition of the vector norms used in this document.

Remark 6.2. The most popular norms used in numerical analysis are Holder 

or p-norms and are defined by

:= + |d*[» +  - - - +  ,

23 The error e 6  R nxl  in storing the vector b is neglected in the arguments presented below. 
This simplifies the explanation.
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where vector d :=  {d1, d2, • - -, d”} G RnXl. Some of the typical p-norms are as 

follows.

||rf||l :=(|<i1| + |^ | + . . .  +  |<r|) ,

II d II, := (|<f‘ |2 +  l<?|! +  • ■ • 4- I J T )1'2 =  {<? d)'!* ,

II d ||oo :=  max|d*| .t

I

Remaxk 6.3. Similar to the vector norms defined in Remark 6.2, we define the 

p-norms for a m atrix A G Rmxn to be

A  ||p := sup ^
dj. 0 d |L ’

where d G Rnxl. Some of the typical p-norms are as follows.

|| A ||i := m a x f ;  |AtJ| ,
J i=i

|| A Hoc := max lA’il ,
i=i

where A :=  [Ay], i.e., Aij are is coefficient of the matrix A at row i and column j .  

The condition number kp(A) of the matrix A is defined to be

«p(A) := || A ||p|| A- l
up i

where H A 1 ||p is the p-norm of A For the 2-norm it can be shown that

/c2(A) := || A ||2|| A "1 ||2 = o’,m ax
)

where amax and crmtn are the maximum and the minimum singular values of the 

matrix A, respectively. I
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The error in the Gauss elimination procedure is related to the condition num

ber of the matrix A  as follows.

\ \ d - d \ \ P <
\\d \\P ~  || A  ||p^  '  ’

where m atrix E  is the roundoff error. However, if we use the oo-norm we have the 

error to be

11 d  ~  d  ,
II i  lie-

where r  is the machine base used by the computer, and l is the number of digits 

of floating point precision;24 see Golub and van Loan [1987] for details. Such an 

approximation is possible because we assume the roundoff error in storing the matrix 

A  is given by
II £  II. <  r _t _
II A  ....

Infinity norm is used in this section because of the relative ease in calculating it.

Suppose the condition number /Coo(.<4.) % r® then the roundoff error can be 

approximated to be ____________________

M - < t | U  <
(6 .11)

One of the methods to decrease the roundoff error is to “pre-process” matrix 

A  before solution. The idea is to scale the matrix A  by pre and post multiplying it 

by two other matrices, and thereby reduce the condition number. One of the simple 

methods to scale is to use two diagonal matrices D\ and D2 as follows.

Dx := diag{rl\  ■■■,!■'*) 6 RnXn 

Dx := diag(rTl, ■ ■ ■ , r rn) £ RnXn

24 For example, a DEC 5000 computer has a  16 digit accuracy in the decimal system when 
calculating using double precision; i.e., r  =  10 and l =  16.
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It is hoped that by choosing values of the integers ■ ■ ■, ln and rj, • • • ,rn we can 

obtain a better conditioned matrix D ^1 A  D2. The solution to the linear system of 

equations Ad  =  b can be found by solving the scaled system D A  D2y =  b. We 

do the following

D i l A D 2 = LU  
Lw = D ^ b  
Uy = w  

d =  D 2y .

M atrix £>1 scales the equations in m atrix A, the matrix D2 the unknowns d. Hence, 

if Koo(Dil A  D2) can be made considerably smaller than /Coo(A), then we expect 

the computed solution d to be closer to the “exact” solution d. However, there 

is no convenient method to construct the matrices D\ and D2. The absence of a 

convenient procedure to construct D\ and D2 motivates changing the unit system, 

which is described in the next section.

6.1.3. Changing Unit Systems

Changing the unit system effects the condition number of the matrix in the 

resulting linear system of equations, thereby changing the accuracy of the solution. 

We change the unit system used to formulate the electromagnetic problem from 

the S I  units to the generalized units using Table 6.2. The generalized unit system 

allows us to choose a value for /?x (or a.x) thereby changing the condition number 

of the matrices. Note that the scaling factor a p does not scale the matrices in the 

FE solution, hence, it has been set to one, i.e., 0^  =  1. We study this effect on 

static, transient and time harmonic problems. Numerical experiments in Chapter 8 

demonstrates the efficacy of scaling.
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6.1.3.1. Static problem

' 0 ‘ A q
< * — i

0 . io  .

Change in the unit system does not significantly improve the condition number 

of the matrices in equation (4.23)

A  F*0
  =  <

F'i’o

of the static problem. This is because the m atrix equation

l ^ K S }  =  { * '* ’ } .  (6-12)

for the electrostatic problem is not coupled to the m atrix equation

[ t f ^ ] { A > }  =  {F *> } , (6.13)

for the magnetostatic problem.

To explain the effects of the change in the unit system on the matrices we 

define the mass and stiffness matrices in terms of the notation introduced in Re

mark 5.1. The “mass” m atrix E R ^ °  Xtl*°) has rows and columns.

However, before imposing the essential boundary condition, i.e., before removing 

the appropriate rows and columns, the size of the m atrix is X rows and X columns 

(X is the number of nodes in the finite element mesh). In the explanation presented 

below, we work with the matrix 6 If we remove the appropri

ate rows and columns in then we obtain the matrix ^ M ^ ] .  Using the

notations used in Remark 5.1 we express E as follows.

[m *"\ = /nxn̂ 'W[v-w*]T[v-iv*] d a ,

where each element in  ̂ j is an integral of the corresponding element in the 

matrix [V*iV^]T [V*iV^].
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Similarly, to explain the effects on the “stiffness” matrix, consider the matrix 

\̂ K.AA ] £ R(3^x3^ ) . ££ we remove the appropriate rows and colu m n s in [ ]

then we obtain the m atrix .̂KvU1J £ R̂ 3nAox3,lAo). Using the notations used in 

Remark 5.1 we express £ as follows.

[ * " 1  =  I  ( v  *  f v  *  Na] <m ■

where each element in [ ICAA j is an integral of the corresponding element in the 

matrix [V x N A]T [V x N a ],

Following the methodology presented in the previous sections we can derive 

the expression for the matrices using the generalized unit system. Here, we only 

present the final expression for the matrix; the details are left to the reader.25 Using 

the notations used in Remark 5.1 we express [ j as follows.

=  J Q m m ^  “ "<(*) [GBNV*iV^]r  [“' “ VAT*] d a  ,
where each element in is an integral of the corresponding element in the

matrix [GBNV* JV̂ ]T [GBNV*JV^]. The spatial dimensions and the spatial derivatives 

are now in terms of the generalized unit system. Similarly, we express GBN/C"<U j as

follows.

'p(x)

Changing the unit system changes the numerical values of the elements of the 

above matrices. The numerical values of the mass and stiffness matrices in the S I  

and the generalized unit system are related as follows.

[ s i ^ j  =  x 102) [ “ “A T *] and [ “ /C ^ ]  =  ^  x 102 j  [

25 The quantities in the generalized system of units are indicated by the left superscript GBN, 
i.e., GBND  is the quantity D expressed in generalized units. A missing left superscript indicates a 
quantity in the S I  system.
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The above relations also holds for the matrices M** j and J K AA i.e.,

[ SIiV r^j =  (e0a = x IO2) [ =SNM "  j
( CL X  I Uin2\

and [ ai/C'“1j =  ^ - a- - - -  j

The condition number (in 2-norm) of the above matrices is the ratio of their largest 

and smallest eigenvalues. All the elements of the mass m atrix change by a numerical 

scaling factor (e0a x x 102). Hence, the ratio of the largest to the smallest eigenvalue, 

i.e., the condition number, remains the same for the mass m atrix in the S I  and the 

generalized unit system. Similar argument is applicable to the stiffness matrix. As 

the numerical scaling factor for the mass matrix is (e0a x x 102), and the stiffness 

matrix is ( f i o a x  x 102), the overall condition number of the matrix

K AA 0 

0  M++

changes. However, linear equations in (4.23) can be uncoupled into a set of two 

equations (6 .1 2 ) and (6.13). Hence, as the condition number of J  and J  K AA

are not effected, the scaling factors (e0a E x 102) and (fJ-oax x 102) have no effect on 

the solution.

6 .1.3.2. Transient problem

The set of linear equations to be solved for each time step in the transient 

problem is stated in (4.53). The matrix on the left-hand side is

( 1
(Ain+l) fi

m a a  m a *  

M ^A M H>
+ A tn + l

q A A  f iAif>  

Qlj)A
+

K AA 0  

0 0
, (6.14)

/

where fi and 7  axe parameters in the Newmaxk algorithm, and the time step size 

Ain+i =  tn+1 — tn. The condition number of the above m atrix determines the 

accuracy of the solution.
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As explained in the static problem, we can express the mass, damping and the 

stiffness matrices in (6.14) in terms of the matrices in Remark 5.1. Once again we 

shall use matrices of the size (4X x 4X), i.e., the matrices before the appropriate 

rows and columns are removed. The mass matrix

dQ , (6.15)
M a*' t '  (^ ]T (JVi| M ]7  [VW*] ■

= / a £(x)M^A M+* [V1V*]7  [VAT,].

the damping m atrix

■ Q A A  qAi!> ■
r ' w . f  m [JVa!7 [v/v„] '

= L °-(x ) dQ ,
fixfrA fixInfi J  n .(VJV„]7 [JV„]

and the stiffness matrix

' K A A  0

0 0
= f  .1

J n u() dQ, (6.17)
[V x Na] [V x iVyi] O'

0 0 

are of the size (4bC x 4X).

For the generalized system of units, the quantities used to define the three 

matrices above will be in the generalized system of units. For example, the mass 

matrix becomes
• G B N J y [ A A  G B N  \ ^ A x h  -

j GENgf GBNxl GBN
■  [JV̂ ]r  [ATa] [JV„]7 [ViV*] •

dQ
G B N  G BN / g BN( J

.[VJV0]7 [ ^ ] [VAT*]7 [V ^ 1 .
(6.18)

Changing the unit system changes the numerical values of the elements in the matrix. 

Using Table 6.3 and 6.4 we obtain the following relation between the matrices in 

the S I  and generalized unit system. The mass matrices

’ (a2 x l 0 6) g™ M a a  ( a2 x l 0 4) GENM ^
, (6.19)

(a* x 104) g™M*a (a .  x 102) GBNM ^

r  s i  \ ^ AA s i  

slM * A 51
— Co
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the damping matrices

‘ sigAA sigAip '

=  ce0
’ (a 4 x 106) GBN B** (a2 x 104) GBN QArp

si tP̂ A si (a 2 x 104) (a 2 x 102) GBN Q-̂ rtp
(6.20)

and the stiffness matrices

Mtni

O' f j  GBNjyAA q -|

0 1 O 0 1

(6 -21 )

results

in different generalized unit systems. The condition number of the matrices for a 

particular problem is determined by the choice of a t . Using the above relations, the 

matrix (6.14) in the generalized system of units is related to that in the S I  units as

follows.

i
■ GBN fy[AA GBN ftfAip '

gbnB£] :=
( ( “ »A<„+i ) 2 /3 GBN ftf'fiA gbn

i 7

' GBN QAA GBN flAlp '

+

■ GBN J(AA o '

GENAtn+1 0 GBN Q^A GBN Q'lnp 0 0

( SIAin+1)2 0
51

e0a x x 106 e0 x 104
-2

s1M m

e0 x 104 

1

e0 x 102

(6 .22)

+
SIAtn+1 0  

1

+

e0a 2 x  106 
" l

e0a l x 104 

0 

0

sigAA 1
eoa2 x 104

si gpA  ____1____
eQa x x 102

s i j ^ A A
fj.Qa x x 102 

0

For the problem at hand the material properties and the geometry are fixed, and 

hence, the matrices in the S I  system of units are fixed. However, changing the value
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a ^ t :=  min (Condition number of gbnB 0  ,

for a x can improve the condition number of the matrix K  in the generalized system 

of units. In theory, we could find an optimal value for a x to minimize the condition 

number of the m atrix GBNK ,  i.e.,

Inn/^itinn numlior nf ll̂ k ^

(6.23)

where a??* is the optimal multiplicative factor. Numerically, we could construct a 

coarse mesh for the problem at hand, and vary a x to find an approximate optimal 

value.

6.1.3.3. Time harmonic problem

The set of linear equations to be solved for the time-harmonic problem (4.67) 

involves the matrix

rK  -  ( u j2 )  TM  (u;)

- ( u j )  TB {K  -  ( u j2 )  lM

(6.24)

where uj  is the frequency of the driving force. The condition number of the above 

matrix determines the accuracy of the solution. As the above matrix is unsymmetric, 

its condition number plays a more crucial role in the solution.

The relationships (6.19) to (6.21) for the mass, damping and stiffness matrices 

are the same for the time harmonic problem. This implies that the condition number 

of the matrix

G BN K

G B N  r K  _  ^ G B N ^  GBN r j t f

_ ( G B N  w )  G B N r ^

( GBNw) GBN‘£

g b n  'K  — ( G B N u ; 2 )  GBN iM

, (6.25)
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can be changed, by varying the numerical multiplicative factor a x. Note that the

frequency SIu> =  —— GBNu;. Similar to the transient problem, we can find an optimal 
cax ______

value for a x to minimize the condition number of the matrix « " K ,  i.e.,

( 6 .26)

where a p̂t is the optimal multiplicative factor.

The effects of scaling depends on the excitation frequency. At very low fre

quencies, Maxwell equations require a solution to only an uncoupled problem. For 

an uncoupled problem, where the vector potential A and the scalar potential ip are 

solved separately, scaling has little or no effect. Hence, scaling is most effective for 

problems at high frequencies; for the MLCC, scaling is recommended for excitations 

above 106 H z.

a op :=  m in  I C o n d itio n  n n m h e r  of GBN

optimal multiplicative factor.
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CHAPTER 7 
ADVANCED MLCC: MESH GENERATION AND 

ELECTROSTATIC SOLUTION

The advanced multilayer capacitor introduced by Ngo [1990] achieves the de

sired decrease in equivalent series resistance esr and equivalent series inductance 

esl, and an increase in capacitance. One of the reasons for its improved perfor

mance is due to the fact that the positive terminations are immediately surrounded 

by negative terminations. The reduced current path between the negative and pos

itive conductors decreases the esr. A smaller esl is because the electrodes come in 

parallel to each other. Moreover, the ceramics used in the capacitor have high per

mittivity, and hence, high capacitance. The esr and esl degrade the performance 

of the capacitor beyond the self-resonant frequency. However, low values of esr 

and esl, combined with high capacitance, increases the self-resonant frequency and 

improves the performance of the advanced MLCCs. From experiments it is deter

mined that a 10(iFarad capacitor with the geometry proposed by Ngo [1990] has 

esr =  6.7 x 10~Aohm, esl =  14.8 x 10~12H enry, and the self resonant frequency 

s r f  =  13.0M H z. The conducting material used for the electrodes and the vias is 

silver palladium, and the dielectric material is a ceramic such as barium titanate. 

Their material properties are listed in Table 7.1. The leakage resistance of the 

conductors are neglected.

As a first step to model the advanced MLCC, in this chapter, we construct a 

mesh for the complex geometry and calculate an electrostatic solution. The matrix 

equation (4.23) is solved, where the degrees of freedom corresponding to the vector 

potential A is equal to zero, i.e., A q =  0. Hence, only the scalar potential needs

130
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Table 7.1. Material properties for the MLCC in S I  unit system.

M atcnal Permittivity e 
(Farad/m )

Permeability fi 
(H enry/m )

Conductivity cr 
(1 /(ohm  — m))

Dielectric 1500eo Mo 0.0
Electrodes & Vias 1.0008 Mo 2.9412 x 106
Bus 0̂ 0.999991 mo 5.8 x 107
Air eO 1.0000004 mo 0.0

to be calculated outside the conductors. The mesh generation and the subsequent 

FE solution axe implemented using MODULEF (Bemadou et al. [1986]). The elec

trostatic solution only provides a value for capacitance, which is determined to be 

11.8fiFarad. The effects of the surrounding air on the value of capacitance is mini

mal, indicating there is very little fringing of the electric field. We explore the use 

of symmetry in the solution of the electrostatic problem, where the one-half, one- 

quater, and one-eighth of the capacitor axe modelled with the appropriate boundary 

conditions. Capacitance obtained from the models using symmetry agree very well 

with the results for the complete capacitor.

7.1. Mesh Generation

The geometry proposed for the MLCC by Ngo [1990] consists of stacked elec

trode sheets with dielectric ceramics in between them. For the purpose of our discus

sion, the alternate electrodes are referred to as positive electrodes and the remaining 

are negative electrodes. The positive electrodes axe connected by a group of positive 

vias running perpendicular to the electrodes. These positive vias pass insulatingly 

through a hole in the negative electrodes. Similarly, the negative vias connect the 

negative electrodes. A cross section of the geometry is shown in Figure 7.1. The
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terminations (which is connected to the external circuit) for a conventional capacitor 

is at opposite ends of the electrodes. However, such terminations leads to higher esl 

and lower sr f .  Hence, the MLCC provides multiple terminations for each electrode. 

The positive-electrode terminations run parallel to one side of the capacitor and the 

negative-electrode electrode terminations run parallel to other side. The topmost 

electrode is referred to as the positive (top) bus, and the bottom electrode is the 

negative bus; see Figure 7.2.

The capacitor can be divided into stacks of cells. Figure 7.1 shows that the 

MLCC has 4 x 4  =  16 stacks of cells. An exploded view through the thickness 

of a single stack is presented in Figure 7.2. A single stack consists of number of 

groups of positive and negative electrodes with the dielectric in between. There is 

a positive bus on the top and a negative bus at the bottom. The positive vias only 

contact the positive electrodes. A cell is defined as a pair of negative and positive 

electrodes with the dielectric in between. A typical cell is shown in Figure 7.3. A 

stack is constructed by “stacking” the cells in Figure 7.3 one on top of the other. 

Some modifications axe made for the cells on the top and the bottom of the stack. 

The entire MLCC is constructed by appropriately connecting a set of stacks. These 

logical divisions in cells and stacks form the basis of the bottom-up construction of 

the mesh.

For the 4x4  stack, lQfiFarad MLCC, each cell has a cross-section of 0.635cm x 

0.635cm. The thickness of the electrodes are 1.5^m, and the dielectric is 15/mi. The 

width of the electrode (to allow holes for the vias) is 0.508cm. There axe 27 dielectric 

layers and 14 pairs of electrodes in the entire MLCC. Hence, with 4 x 4 = 16 stacks, 

that equals 16 x 27 =  432 cells connected in a novel architecture. A simple estimate 

of the capacitance of each cell is 10/432 % 0.02ZlfiFarad. See Anand [1993] for a 

more comprehensive description of the geometry proposed by Ngo [1990].
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A model for the MLCC consists of a mesh with the MLCC in the middle 

surrounded by air. This surrounding air, henceforth, shall be referred to as the 

airbox. During mesh construction we divide the domain in to the airbox and the 

capacitor. These are meshed separately and glued together. The division and the 

assembly is carefully planned to avoid any “unresolved nodes” as in Figure 4.1. 

The geometry of the airbox is an hexahedron with the capacitor in the center as 

in Figure 7.4. The airbox is further divided into six hexahedra as in Figure 7.5. 

In our construction, we choose to only mesh the three of hexahedra’s shown in 

Figure 7.6. The remaining three are generated using mirror images. Finally the 

mesh for the capacitor is generated. This is accomplished by dividing each layer 

(a group of positive and negative electrodes with the dielectric in between) into 

smaller hexahedra as shown in Figure 7.7. Note that four distinct hexahedra are 

required to completely describe the capacitor since the edges terminate with vias. 

Next, each of the four distinct hexahedra! regions can be broken into layers of 

seven simpler hexahedra! regions. This is illustrated in Figure 7.8. For such a 

complicated geometry a new mesh generator had to be created using the existing 

modules in MODULEF. The code presently is limited to generating hexahedra! brick 

elements with straight edges. All aspects of mesh generation, including coding using 

MODULEF, is discussed in Langford, Srinivas and Vu-Quoc [1995]. George [1991] 

explains in detail some of the popular mesh generation techniques.

7.2. Solution without symmetry

The MLCC has an architecture of interconnected electrodes and vias. This 

makes an accurate analytical estimate of the capacitance impossible. In order to 

establish bounds on the value of capacitance we employ the analytical formula for
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an ideal parallel plate capacitor, i.e., the capacitance

r  eo A
C ~ ^ T '

where A  is the area and d is distance between the electrodes. The capacitor has 

14 pairs of electrodes, 27 layers of the dielectric, and 40 vias (20 positive and 20 

negative). Each pair of electrodes is divided into 4 x 4 =  16 cells. The capacitance 

of each cell is estimated by the above formula. The upper bound on the area 

is (6.35 x 10-3) x (6.35 x 10-3) =  4.03225 x 10-5 m 2, and the lower bound is 

(5.08 x 10~3) x (5.08 x 10-3) =  2.58064 x 10-5 m 2. The bounds are estimated from 

the area of the electrode in each cell: The upper bound corresponds to the case 

when the holes in the electrode (for the vias) are covered with conducting material, 

and the lower bound corresponds to the case when the holes in the electrode (for 

the vias) and its immediate surroundings axe covered with the dielectric. From the 

above arguments we estimate that the capacitance of the entire capacitor lies in 

between the upper bound

™ 1500eo (4.03225 x lO"5) _  „
15.0 x 10-6 ”  ** 5

and the lower bound

1500eo (2.58064 x 10~5) „ _  „
1 6 x 2 7 x --------15.6" x 10-0--------- = 9 - « S 6 W .

The effect of the vias and the bus/terminations has not considered.

The electrostatic solution using the FE method has been discussed in detail 

in the previous sections. To recapitulate, we solve the problem (2.23) with some 

simplifications. We define a new scalar potential <j) as follows

E0 =: -g rad  <f> .
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The difference in the potential <f> gives the voltage between two points. For electro- 

static problems we only need to solve for the potential fa  — $ in the non-conductive 

region ft \  0 ^ .  Hence, the problem is defined as follows.

Find <j) €  R such that
div (egrad <f>) =  0 in (ft \  f tco n d ) ,

* =  fa on r  •3*0
D 0*n II d o • on r .  • . /»* 0

We use linear-isotropic materials with D0 =  e(x)E0 =  — e(x)gradi/>0. The permit

tivity is piece-wise constant and its values are listed in Table 7.1. The boundary 

dQ =: T, • U T • , where T • corresponds to the surface of the conductors with theft*o S*o 3*0
voltage <f>a specified. The remaining part of the boundary is T, • where Do*n =  0nit o
is specified. The capacitance is obtained from the electric energy stored in the 

material, i.e.,
/ (e grad <f>) • (grad <f>) dQ

where V  is the potential difference between the positive and the negative electrodes. 

The potential difference is specified in the problem in terms of appropriate values to 

fa  at the surface of the conductors. Using the m atrix representation in Chapter 4 

we can write the capacitance to be

(7.2)

see Chapter 5 for details. The column vector j  <f> j  =  j  } is the solution for the 

potential (j) at the nodes in the mesh.

7.2.1. FE Results W ithout an Airbox

This model does not include the surrounding air. The value of the capacitance 

is computed to be 11.88 n Farad. The effect of the mesh size is studied. Figure 7.9

{ U T [ * * * ! { * » }  =
V 2 — v 2 ’

v2 (7.1)
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Table 7.2. Capacitance with increasing number of elements in the 
thickness direction.

Number of elements 
in thickness dir. 
for each layer

Degrees
required

Memory 
for solution

CPU time Capacitance 
in fi Farad

3 35640 50 MB 3 minutes 11.8811395
5 53181 80 MB 4 minutes 11.8811258
7 70677 106 MB 5 minutes 11.8810694
9 88173 133 MB 6 minutes 11.8810603
11 105669 158 MB 8 minutes 11.8810576

and Table 7.2 show the convergence of the capacitance with increasing the number 

of elements in the thickness direction.

The accuracy of the FE solution depends on the data available for the com

ponent. The physical properties of the materials and the geometry are changed 

during the manufacturing process. Moreover the material properties of the capaci

tors change with temperature. For example, Table 7.3 (from Moulson and Herbert 

[1990]) is a list of typical change in capacitance with temperature and corresponding 

codes for different types of capacitors. Hence, for a better estimate of the capaci

tance, a good measurement of the properties of the materials and the geometry is 

required.

7.2.2. FE Results with an Airbox

The non-conducting domain, for which the solution is determined, extends to 

infinity. However, the mesh is truncated at a finite distance from the capacitor. 

The present formulation specifies a zero flux (a zero Neumann boundary condition) 

at the truncated boundary. This introduces errors. The thickness of the MLCC is 

much smaller than the cross-section, and hence, we expect very little fringing. This
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Table 7.3. Typical capacitance variation for Class II capacitors (only 
a small part is listed below).

EIA code Temperature range (°C ) EIA code Capacitance change/%

X7 -55 to +125 D ±3.3
X5 -55 to +85 E ±4.7
Y5 -30 to +85 F ±7.5
Z5 +10 to +85 P ±10

implies that the value of the capacitance should be, to a large extent, unaffected by 

the size of the airbox.

The code developed for mesh generation allows a exponential change in the size 

of the elements in the airbox. The thickness of the elements next to the capacitor 

is much smaller than the elements close to the exterior of the airbox. This allows 

a smaller number elements, and hence, a smaller number of degrees of freedom, to 

model a large airbox. Addition of a three element thick airbox to the capacitor 

increases the number of nodes from 35640 to 59616: The number of degrees of 

freedom and solution time have increased significantly; the complexity of the mesh 

is clearly evident from Figure 7.10. Adding a six element thick airbox increases the 

number of nodes to 83637. Figure 7.11 shows the change in the capacitance with 

the overall size of the airbox. Lack of convergence is attributed to the inability to 

further refine the airbox due to limitations of the computer resources. The change 

in capacitance due to the inclusion of the airbox is very small, and hence, may be 

omitted for an electrostatic solution.

To better understand the behavior of the electric field inside the MLCC, we 

construct a smaller model with 3 cells in each stack (i.e., 2 pairs of electrodes), and 

2 x 2  =  4 stacks placed beside each other. The mesh in Figure 7.12 shows a scaled
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mesh. The iso-contours of the potentials at different cross-sections are shown in 

Figures 7.13, 7.14, 7.15, and 7.16. These are scaled plots, hence the fringing (closely- 

packed iso-contours) can be seen in the airbox. However, the model with the exact 

dimensions shows negligible fringing.

7.3. Solution with Symmetry

The architecture of the MLCC allows us to exploit the symmetry in the solu

tion, and hence, model only a small part of the capacitor. Figures 7.13, 7.14, 7.15, 

and 7.16 shows that we can exploit the symmetry of the geometry: For example, the 

solution on the either sides of the horizontal plane in Figure 7.13 are mirror images 

of each other with opposite signs for the potentials. Also, the solution on either 

sides of the vertical plane in Figure 7.14 are mirror images of each other. Normal 

electric flux can be set zero on the plane of symmetry, i.e., e(grad <fr) • n is zero on 

the symmetry plane, where n represents the normal to the plane.

For one-half and one-quarter models we set the normal flux equal to zero 

at the plane of symmetry. For the one-eighth model we use following engineering 

approximation for boundary condition at the nodes in the dielectric that do not lie 

on the symmetry plane:

e(grad <j>) = ,

where AV is the potential difference between electrodes, and Az  is the distance 

between electrodes. The results for the 2 x 2 x 3  stack of cells are presented in 

Table 7.4. The mesh26 and the iso-contours for the potentials are shown in Fig

ures 7.17, 7.18, 7.19, 7.20, 7.21, 7.22, 7.23, 7.24, 7.25, 7.26, 7.27, and 7.28, using a

26 The mesh for the symmetry-based models is generated using Version 2.0 of the mesh gener
ator. This substantially revised version eliminates the option to  include an airbox, and includes 
options to model a one-half, one-quarter or one-eighth of a  capacitor.
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Table 7.4. Capacitance using sym m etry for a 2 x 2 x 3 stack of cells.

Symmetry capacitance ( / a farad.) Degrees of freedom

Whole 0 .2 7 7 8 4 2 8 5 2 4 4 8

Quarter 0 .2 7 8 8 9 8 0 0 8 3 3

Eighth 0 .2 7 9 4 6 2 1 4 4 4 1

visually-appealing aspect ratio (the dimensions axe not representative of a real ca-
(4 x 4 x 27)

pacitor). The capacitance listed in Table 7.4 must be multiplied by —--------------- to
(2 x 2 x 3)

estimate the capacitance of the whole capacitor to be approximately 1 1 .9 / a Farad.
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Positive viaNegative via

i " ■ • /  ■ -.. . 1 ■ ■ H  rv -  "  • ■^1 ' ' ’ - .. 1

/  Positive electrode 

C urrent flow

A cell
A hole

Figure 7.1. Advanced multilayer ceramic capacitor.
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15 fim

Negative E legm de

0.508 cm

iu p  uua

Positive Via

Positive Electrode

Negative Via

0.635 Bottom Bus

0.635 cm

Figure 7.2. A single stack of an MLCC. There are two positive and 
two negative vias (only one is shown). Current flows along the arrows.
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Dielectric
Positive Electrode

Negative Via i ]

Positive Via

Negative Electrode
0.635 cm

Figure 7.3. A typical single cell in the interior of a stack. The cells 
on the exterior required to be modified so as to attach to the bus and 
the terminations.

Figure 7.4. The geometry of the airbox.
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Figure 7.5. The airbox domain can be logically divided into six hexahedra.

Figure 7.6. Once the three unique hexahedra have been glued to
gether, the completing piece can be obtained by three mirroring op
erations about orthogonal planes through O.
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Figure 7.7. The domain of the advanced multilayer ceramic capac
itor can be logically divided into a repetitive array of four distinct 
hexahedra! regions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Figure 7.8. The four distinct hexahedra! regions illustrated in the 
previous figure can be further reduced to layers of seven distinct hex
ahedra! regions.
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MODULEF results for the advanced MLCC without airbox

C = 11.8f 10576
r licro Farad

Number of mesh layers for each dielectric layer

Figure 7.9. The capacitance converges with better refinement of the dielectric.
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Figure 7.10. The entire MLCC with an airbox.
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MODULEF results for the advanced MLCC
11.889

is with 3  airbox divisions11.888

'o" is with 6  airbox divisions

11.887

11.886

•£ 11.885

11.884
C L

11.883

11.882 _  -  *>

-o- -_  - Q  O- -  -0  o

11.881
20 30

Thickness of airbox in cm

Figure 7.11. Capacitance with increasing airbox thicknesses. Poor 
mesh refinement in the airbox prevents us from seeing such conver
gence.
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Figure 7.12. The mesh for a 2 x 2 x 3 stack of cells. Dielectric and 
frontal airbox sections axe removed for clarity.
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Figure 7.13. Isocontours of the potential ^  at a horizontal plane at 
the center of the dielectric of a 2 x 2 x 3 stack of cells.
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Figure 7.14. Isocontours of the potential 4> at a vertical plane cutting 
through the center of the vias for a 2 x 2 x 3 stack of cells.
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Figure 7.15. Isocontours of the potential <f> at a vertical plane cutting 
through the dielectric for a 2 x 2 x 3 stack of cells.
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Figure 7.16. Isocontours of the potential $ at a vertical plane at an 
angle with the vias for a 2 x 2 x 3 stack of cells.
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Figure 7.17. This multilayer capacitor is used to demonstrate that a 
a capacitor can be accurately modeled with a smaller mesh by using 
symmetry. This configuration is the reference for future comparisons.
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Figure 7.18. The voltage on the outer surface of the full-capacitor 
model provides a reference to check the accuracy of partial-capacitor 
models.
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Figure 7.19. An. x-y slice through, the center of the capacitor is not a 
plane of symmetry. It provides a reference to check the accuracy of 
smaller symmetry-based models.
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Figure 7.20. A y-z slice through the center of the capacitor marks a 
plane of symmetry. It also provides a reference to check the accuracy 
of smaller partial-capacitor models.
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Figure 7.21. An x-z slice through the center of the capacitor marks a 
plane of symmetry. It also provides a reference to check the accuracy 
of smaller symmetry-based models.
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Figure 7.22. Symmetry allows the entire capacitor to be accurately 
represented by this quarter-capacitor. A zero-flux boundary condition 
is imposed on all external dielectric surfaces.
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Figure 7.23. The voltages on the external surface of the quarter- 
capacitor can be compared to those on the surface of the whole ca
pacitor.
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Figure 7.24. The voltages on this x-y slice through the center of the 
quarter-capacitor can be compared to those on the x-y slice through 
the center of the whole capacitor.
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Figure 7.25. A rotation of the quarter-capacitor reveals x-z and y-z 
surfaces that correspond to the x-z and y-z slices through the center 
of the whole capacitor.
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Figure 7.26. Since an x-y slice passing through the center of the whole 
capacitor is not a plane of symmetry, this eighth-capacitor model is 
mathematically invalid. We thus consider this an engineering approx
imation of the capacitor, impose a no-flux boundary condition on the 
vertical dielectric surfaces, and impose a flux of £ ^ 7  on the top di
electric surface, where Az  is the distance between electrodes.
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Figure 7.27. The voltages on the external surface of the eighth- 
capacitor can be compared to those on the surface of the whole ca
pacitor.
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Figure 7.28. A rotation of the eighth-capacitor reveals x-y, x-z and 
y-z surfaces that correspond to the x-y, x-z and y-z slices through the 
center of the whole capacitor.
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CHAPTER 8
BENCHMARK ELECTROMAGNETIC PROBLEMS

Coupled time-varying Finite Element (FE) solutions for three-dimensional ge

ometries is implemented on the computer using FEAP (Zienkiewicz and Taylor 

[1989]) and MODULEF (Bemadou et al. [1986]). The solutions are computationally 

expensive: A transient solution requires four degrees of freedom (d.o.f.) per node, 

and a time-harmonic solution requires eight d.o.f. per node. Although the final 

banded m atrix is stored using skyline (or profile) storage, the memory requirements 

for complex problems could exceed the computational resources available today. In 

this chapter, we explore solutions to benchmark electromagnetic problems listed in 

Table 8.1. The FE and analytical results are comp axed. We also study the effects of 

scaling Maxwell equations from the S I  unit system to the generalized unit system.

In Section 8.1, we examine the electric field inside a lossy dielectric material. 

The transient and time-harmonic FE solutions are identical to the analytical solu

tion. The lumped parameters, i.e., the resistance R  and capacitance C are derived 

from the FE  solution. In Section 8.2, we study the wave propagation inside a cube. 

Here, we use the magnetic vector potential A. The Coulomb gauge is imposed via 

the penalty method. The choice of the penalty parameter is crucial to the accuracy 

of the solution.

As discussed in Chapter 6 , effective solutions to coupled electromagnetic prob

lems require the use of a multiple-scale technique. However, scaling does not improve 

the solution of uncoupled problems. To explain the effects of scaling, in Section 8.3, 

we study the solution to the electric and magnetic fields inside a simple parallel 

plate capacitor, where a dielectric material is sandwiched between two metal plates.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

167

The dielectric material has zero conductivity and the metal electrodes have finite 

conductivity. The dimensions of the dielectric and metal plates are equal to that 

of a single cell in a MLCC proposed by Ngo [1990]. We conclude that scaling im

proves the condition number of the FE matrix in both transient and time-harmonic 

problems. However, only solutions to time-harmonic problems show a significant 

improvement in accuracy. We study the effects of mesh refinement on the choice of 

an optimal scaling factor a ^ 1. We conclude that a°^1 is not significantly effected 

by mesh refinement. However, the scaling factor depends on the excitation 

frequency and the material properties.

The domain of influence of the electromagnetic fields extends to infinity. The 

capacitive power is primarily stored inside the dielectric material. The resistive 

power is stored inside the conductors. However, depending on the direction of 

the current inside the conductors, the inductive power could be stored, either, in 

between the electrodes, or in the air surrounding the capacitor. In Section 8 .4 , we 

compare the inductance obtained from the FE solution to the values from the simple 

formulae proposed by Grover [1973]. We conclude that a sufficiently large box of air 

surrounding the capacitor must be included in the FE model to obtain an accurate 

value for the inductance.

Note that most applications for a MLCC axe in circuits that axe excited by 

voltages, currents, or fields at a certain fixed frequency. Hence, we focus our atten

tion on time-harmonic solutions.27

8.1. Lossy Dielectric Materials

The problem in Figure 8.1 consists of two lossy dielectric materials joined 

together. The first 1.0 m  x 2.0 m  x 2.0 m  (length x breadth x height) block has

27 Non-linear material properties may demand a  full transient solution.
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Table 8.1. A synopsis of the numerical examples presented in this section.

Problem description Potentials
used

r f S' f 1XjpC ox
solution

Remarks

The lossy dielectric material in 
a parallel plate capacitor. The 
electrodes axe ignored. (Mac- 
Neal [1992])

i> Transient 
& time- 
harmonic.

Effects of a jump in mate
rial properties for both the 
transient & the time-harmonic 
problems. Compared with an 
analytical solution.

Wave propagation in a homo
geneous non-conducting cube. 
Fields E and B are specified 
on the surface of the cube. 
(Monk [1993])

A Time-
harmonic.

Effects of coupling between 
different components of A. 
Effects of mesh size and 
the choice of Dirichlet or 
Neumann boundary condition. 
Both gauged and ungauged so
lution. Scaling not an issue. 
Compared with an analytical 
solution.

Parallel plate capacitor. A , Transient 
& time- 
harmonic.

Problem small enough to 
clearly understand the effects 
of scaling.

Two parallel electrodes with 
constant current. (Anand 
[1993])

A , ip Time-
harmonic.

Calculate R  and L. Study the 
effects of mesh size and scal
ing. Compared with an ana
lytical solution.

the material properties =  e0, \lW =  fi0, and =  3.3333 x 10-6 1 /(ohm  — m), 

and the second 1.0 m  x 2.0 m  x 2.0 m  block has the material properties =  e0»

^(2) =  and c r =  6.6666 x 10-6 1 /(ohm  — m).

8.1.1. FE Model

We limit the scope of the solution to only electric fields, and hence, we set the 

vector potential A  to be zero. The transient electrodynamic problem can be stated
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as follows.

•  •  •

Given yjQ =  0, 0o =  0, 0o that satisfies initial conditions, find 
0(x , t) forall x  € and t > 0, such that

div (<7grad ■0) +  div(egrad^) =  0 in fl ,

0  =  0 o at Surfaces A & C

(cr grad 0  +  egradipj *n =  0 on other exterior surfaces .

The initial conditions 0 O := 0(x , t = 0) is obtained by solving the following problem.

Find 0o 6 R such that
div (egrad 0 O) = 0  in Q ,

0o =  at Surfaces A & C

(egrad 0Oj • n =  0 on other exterior surfaces .

Material properties e and a  are piece-wise constant. The voltages 0 a and 0oa are 

specified at Surfaces A and C. The voltage V, the current I , the capacitance C and 

the R  for the lumped parameter model is obtained from expressions in Chapter 5.

8.1.2. Equivalent Circuit Model: Transient Excitation

An equivalent circuit for the sandwich lossy dielectric is shown in Figure 8.2. 

The capacitance and the resistance that model the first block (the lossy 

dielectric material between Surfaces A and B) are given by 

(length) 1
£ (1) =

(area)(conductivity) 4 x 3.3333 x 10
—  =  7.5008 x 104 ohm  ,

and

c(1) =  (area)(pennittivity) =  * * 8.85 x 1 0 -  =  ^  x 10_n 
(length) 1

Similarly, C ^  and R ^  that model the second block and are given by

# (2) =
1

4 x 6.6666 x 10- 6 =  3.7498 x 104 ohm  ,
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Surface A

feW , fiW ,
/  SurSurface B

A

2.0 m

a

W W

r
2.0 m

Surface C

1.0 771 1.0 m

Figure 8.1. Lossy dielectric inside a capacitor. This is a sandwich of 
two lossy dielectric materials with different material properties. The 
plane at Surface B, divides the two materials.

£ (2)

Surface A

X ~

—VvVWW'—

J2«

Surface B

- x —

—'VWVVW'—
RW

Surface C

- X

=  <f)W _  j W  y{2) =  ^(C) _  flB)

Figure 8.2. An equivalent circuit model for a lossy dielectric.
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and
c m  = 4 >< 8 .8 5 x 1 0 -"  =  3 540Q x i0 . „  p a n d

The total voltage drop V  between Surfaces A and C is split into two parts V ^  and

V^2\  where V  =  V^1) +  V^2\  For a problem with a specified voltage V , we can

express the current I  flowing through the circuit and the voltages V ^  and VM  as 

follows.

V w  =  y f h f z d t ,  (8.1)
J\ Jto

y M  = V -  y M  , (8.2)

where

CM dV  1
h  CM +  CM dt + RM (CM + CM) ’  ̂ '

f 3 := e(/3 *) , (8.4)

( r m  +  RMJ

:= RMRM (CM + CM) ’ 8̂

and the total current I  is given by

/  =  c< 1 ,i^ 2  + B ) l' <,, =  c(2,^  +  ^ <2)- (8-6>

In the ensuing example we specify a voltage of

V  = Vq coscu t , (8-7)

between Surfaces A and C. From the above expressions we obtain the voltage be

tween Surfaces A and B to be

C M v0uj ( f 3 s m o j  t  — u; c o s u i  t )

(CM + CM) f f + v *

Vo ( /3  cosu> t  +  u) sina> t)
^  RM (CM + CM) f i + c u 2
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(  C(H . ,2
w+cwj-^3)  /U cco+cw )" +  K »(cd)+CW )*; r_  ^

-Ko (8 -8)

and the current I  is given by substituting the expression for V^1) in (8.6).

8.1.3. Equivalent Circuit Model: Time Harmonic Excitation

For the tim e harmonic problem, we can express the complex current I  and 

voltages and V(2) in terms of the complex voltage V.  The impedance due to 

the first block is

wflW CW  +  1
and the impedance due to the second block is

= ______ ^ ____iuJK*)C<2> +1
The total impedance Z  =  Z ^  +  Z ^  is related to the current I  as follows

/ = £ =  9Z Z M  +  Z(2) ' 

The voltage is each block is given by

RWV W  =  /  £d) = I
w R W C W + 1 ’

and

y(2) =  J  2 ( 2 )  =  /  ^ (2)
iuRWCW + 1 ‘

8.1.4. Numerical Results

The domain in Figure 8.1 is divided into eight elements: The first four elements 

correspond to the first block and the next four elements correspond to the second 

block. There are 27 nodes. The transient behavior of the voltages and the current 

obtained from the finite element model is compared to the analytical solution in 

Figure 8.3. The mesh and the electric field E  at tim e t =  1.0 x 10-4 are given in 

Figure 8.4. The time-harmonic FE solution is compared to the circuit model below.
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Quantity FE model Circuit model

Voltage Vf1) 6.64854 x 10"1 -  1.75064 x 10~2i 6.64850 x 10"1 -  1.75060 x 10~2i

Current I 8.90075 x 10"6 +  1.17878 x 10"6i 8.9008 x IQ '6 +  1.1787 x 10"6i

The variation in the scalar potential ip is piece-wise linear and so are the FE basis 

functions (interpolation), and hence, a near perfect model for the lossy dielectric.

8.2. Wave Propagation in a Cube

The problem of determining the propagation of a wave inside a cube tests the 

applicability of the present finite element formulation to time-harmonic problems. 

We solve for the potentials A  and ip. The fields are computed from numerical 

derivatives of the potentials. As the interpolation functions for the potentials are 

piece-wise linear, we have the derivatives to be constant inside an element. The 

errors in the field quantities decrease with mesh refinement. The Coulomb gauge 

does not effect the accuracy when the potentials (Dirichlet boundary condition) A 

and Tp axe specified on the exterior boundary, however, Coulomb gauge is required 

to model the cube when the fields (Neumann boundary condition) E and B are 

specified at the exterior boundary.

The accuracy of the results axe compaxable to the solutions using special ele

ments such as the edge elements (Monk [1992]). However, as the focus of the present 

work is to model the global properties (the lumped parameters) of the device, we 

choose not to employ any special elements to treat material interfaces.

Consider a cube Q := [0, l]3 that is subjected to a time harmonic electric 

and magnetic field at the boundary. The material inside is a dielectric with zero 

conductivity, with the material properties e =  l ,  fi = 1 , c  =  0 .  We choose a
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plane wave solution for the cube to be

E =  a  exnf — <= C3 .
" (8-9)

B =  (k x a) exp(—zaik'x) G C3 ,

where the vectors a  G R3 and k G R3 are defined to be such that |a| =  1 and |k| =  1, 

with a* k =  0. The angular frequency of the wave is u  and the wave number is given 

by |k |. A set of potentials that corresponds to the fields in (8.9) are

A =  —-7- exp (—iu/k*x) G C3 ,
tu} K 1 (8.10) 

=  0 G c .
Note that this above set of potentials is one of the infinite choices possible. The 

above choice satisfies the Coulomb gauge div A  =  0.

In our test example we choose

(8 .11)

We obtain the potentials and the field quantities inside the dielectric material by 

the following two methods.

Using Dirichlet boundary condition: The potentials A and in (8.10) are imposed 

on the exterior surface (dfi).

Using Neumann boundary condition: The fields E and B in (8.9) axe imposed on 

the exterior surface (dCl).

The fields axe obtained inside the dielectric via postprocessing. The fields are 

then compared to the exact solution in (8.9). The L2 norm is used to measure the

a =— (1.0 ei +  1.5 ex +  0.5 ei) ,

k =  0.0 ex)
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error in the approximation. The L2 norm of the real part of the electric field Er 

over the volume fi is defined to be

|| Er ||i2 :=  /  (Er *Er ) dtt . (8.12)
•/ 0

If A Er is the error between the FE solution and the exact solution, then the L2 

norm of the error in the real part of the electric field is

|| A Er \\L2 :=  I  (A Er *AEr ) dn  . (8.13)
J n

Similarly we define the errors in the remaining field quantities.

The cube in Figure 8.5 is meshed using 8-noded brick elements with three 

different meshes that are shown in Figure 8.6. The coarse mesh has 8 elements and 

27 nodes, the second mesh has 16 elements and 125 nodes, and the most refined 

mesh has 512 elements and 729 nodes. The number of degrees of freedom increase 

with the number of nodes in the mesh. The final size of the m atrix in the FE 

solution for the three different meshes is given in Table 8.2. For the FE solution 

obtained using a Dirichlet boundary condition, the contour and vector plots on a 

slice for the real and imaginary parts of the electric field axe given in Figures 8.7, 

8.8, 8.9, and 8.10. The variations of the electric field on a horizontal line in the slice 

plane are given in Figures 8.11 and 8.12. Figure 8.13 plots the magnitude of the 

errors in the field quantities along the line. The global errors in the field quantities 

decrease as the mesh is refined; see Figure 8.14. The errors are comparable to the

solutions obtained by Monk [1992]. The solution is not sensitive to the Coulomb

gauge.

For the FE solution obtained using a Neumann boundaxy condition, the solu

tion is very sensitive to the Coulomb gauge. Figure 8.15 shows the decrease in the 

Z2-norm of the error in the real part of the electric field with increasing values for
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Table 8.2. The size of the matrix, i.e., number of simultaneous linear 
equations to be solved in the FE problem. The meshes are given in 
Figure 8.6.

Mesh Number Number of equations

of Nodes Dirichlet b.c. Neumann b.c.

1 27 8 208

2 125 216 992

3 729 2744 5824

the penalty parameter. The penalty term is imposed using reduced integration. The 

divA  also decreases with increasing values for the penalty parameter. Figure 8.16 

shows that the values of the electric field along a fine parallel to the ei-axis passing 

through the center of the cube (0.5,0.5,0.5). The FE solution approaches the ex

act solution as the penalty parameter is increased. However, a penalty parameter 

greater than 1 x 102 does not significantly improve the solution. Note that very 

high penalty parameters will over constrain the solution, and force it to be zero ev

erywhere. Moreover, with the use of reduced integration, large penalty parameters 

lead to ill-conditioned matrices.

8.3. Effects of Scaling: Study a Parallel Plate Capacitor

We apply the multiple-scale technique discussed in Chapter 6 to a simple par

allel plate capacitor shown in Figure 8.18. The dimensions of the parallel plate 

capacitor are equal to the single cell in a MLCC. The parallel plate capacitor con

sidered here does not have the positive and negative vias of the single cell; the top 

and bottom electrodes are flat rectangular plates unlike the single cell that was 

shown in Figure 7.3. The electrodes have a footprint of 0.635cm x 0.635cm, and are
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1.5fim  thick. The dielectric in between is 15pm  thick. The material properties for 

the electrode and the dielectric are listed in Table 7.1.

A voltage is applied at the top plane of the top electrode and the bottom 

plane of the bottom  electrode. The electric and magnetic fields are determined by 

solving the coupled electromagnetic problem, i.e., the vector potential A and the 

scalar potential tp are solved simultaneously. The matrix equation (4.53) is solved 

for each time step in the transient solution. The entries in the matrices are fu n c t i o n s  

of the time step size A in+i. Similarly, the matrix equation (4.67) is solved for each 

frequency to determine the time-harmonic solution. The entries in the matrices are 

functions of the angular frequency u>.

As explained in Chapter 6, the use of the multiple-scale technique reduces the 

condition number of the FE matrices thereby increasing the accuracy of the solution. 

We examine the effect on the condition number with the changing mesh size. The 

capacitor shown in Figure 8.18 is discretized using four different meshes: The num

ber of nodes for the four meshes shown in Figure 8.18 range from 20 nodes for mesh 

(a) to 245 nodes for mesh (d). Table 8.3 lists the number of nodes, the number of 

elements, and the unconstrained degrees of freedom in the FE  solution. Figure 8.19 

shows the effect of changing the mesh size28 and varying the scaling factor a x for 

the transient and the time-harmonic solutions, respectively. We observe th a t the 

mesh size does not significantly effect the choice of the optimal scaling factor aa£)t. 

We conclude for this particular example that % 103 for the transient and time- 

harmonic solutions. Hence, in practice, we could choose the optimal scaling factor 

a opt from a coarse mesh and use it for a refined mesh. We also observe that the
X

28 The mesh size is determined by the size of the smallest element in the mesh. Here, the 
radius of the smallest sphere th a t encloses completely an element is used to measure the size of an 
element. In general, more the number of nodes, smaller the size of the element, and smaller the 
mesh size.
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condition number increases with an increase in the number of degrees of freedom 

in the solution. The condition number shows a significant improvement from the 

S I  system of units to the generalized, system of units for both the transient and 

the time-harmonic solutions: see Table 8.4 for details. The relative error improves 

significantly for the time-harmonic solution: For mesh (d) we observe in Table 8.4 

that the relative error improves from 0(lO -2)% in the S I  unit system to C?(10~8)% 

in the optimal generalized unit system. However, the relative error does not signifi

cantly improve for the transient solutions. The reason being that the time-harmonic 

problem demands a solution to an unsymmetric matrix, as opposed to a symmetric 

matrix for a transient problem.

In Figure 8.20, we examine the effect of change in the time step size for tran

sient solutions, and the change in frequency for the time harmonic solutions. It is 

evident that the optimal scaling factor a™* depends on the time step size and the 

frequency. For transient solutions, at smaller time step size, numerical difference 

between the the coefficients (1 / fi), cr/Afn+1, and e /A t2+1 of the FE matrices (6.22) 

are smaller, and we obtain smaller condition numbers. Similarly, for time-harmonic 

solutions, at higher frequencies, the numerical difference between the the coefficients 

(1/^j), aui, and eu>2 of the FE matrices (6.25) axe smaller, and we obtain smaller con

dition numbers. Moreover, the optimal scaling factor a ^  changes with frequency. 

For example, in a time-harmonic solution, off1 ~  101 for uj =  10s, and ~  103 

for uj  =  109. The effect of frequency on the numerical conditioning of a solution to 

Maxwell equations is discussed in Chapter 9.

The properties of the material, i.e., the conductivity cr, perm ittivity e, and the 

permeability /i effects the choice of an optimal scaling factor. Figure 8.21 shows the 

effect of changing the conductivity with the S I  unit system and the generalized  unit 

system. It is evident, that a higher conductivity and lower frequency, degrade the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

179

Table 8.3. The specifications of the different meshes used to solve 
the parallel plate capacitor problem. The different meshes are shown 
m Figure 8.18.

Mesh Number of 
nodes

Number of 
elements

Degree
Transient

s of freedom 
Time-harmonic

(a) 20 4 64 128

GO 45 16 144 288

(c) 125 64 400 800

(d) 245 144 784 1568

Table 8.4. The condition number and relative error for the par
allel plate capacitor problem. The different meshes are shown in 
Figure 8.18.

Mesh S I  uni

Condition
number

t system

Relative
error

Generalize

(ar
Condition
number

i  unit system 
= 103) 

Relative 
error

Transient solutions

(a) 8.75 x 1018 2.40 x 10~17 9.10 x 108 1.05 x lO"17

0 0 1.15 x 1019 1.95 x 10~17 1.22 x 109 1.95 x 1 0 '17

(c) 1.70 x 1019 1.43 x 10-17 1.27 x 109 1.02 x lO”17

(d) 1.80 x 1019 1.53 x IQ '17 1.34 x 109 1.41 x 10"17

Time-harmonic solutions

(a) 5.21 x 102° 2.17 x 10~5 3.27 x 1012 1.05 x 10"u

(b) 2.74 x 1021 6.26 x 10~5 4.39 x 1012 9.48 x 10~n

(c) 2.40 x  102° 7.08 x 10~s 4.58 x 1012 1.96 x lO"10

(d) 2.55 x 102° 8.04 x 10"5 4.52 x 1012 2.06 x lO"10

condition of the solution in the S I  unit system and the use of the multiple-scaling 

technique is imperative to avoid numerical ill-conditioning.
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8.4. Inductance of Two Metal Electrodes

The computation of the inductance of two parallel conducting plates provides 

a comparison between the simple formula for inductance developed by Grover [1973] 

and the FE results. The formula for inductance developed by Grover [1973] is used 

by Anand [1993] to compute the inductance of the entire MLCC. The geometry of 

the two parallel conducting plates is shown in Figure 8.23. The length I of each 

plate is 0.635 x 10~2 m, and the breadth b is 0.635 x 10-2 m. The thickness t is

1.5 x 10~6 m. The plates are separated a distance h = 15 x 10-6 m.

Remark 8.1. The behavior of the magnetic field B around an infinitely long 

straight wire carrying current provides an insight into the behavior of the magnetic 

field around the electrodes of a capacitor. Wangsness [1986, pp. 242-243] shows that 

the magnetic field decays as an inverse function of distance from the conductor. This 

suggests that bigger the size of the surrounding box of air, better the approximation 

for the magnetic field, and hence a more accurate value for the inductance. As 

computational resources limit the size of the box of air. The inverse relationship 

between the magnetic field and the distance from the conductor suggests that much 

of the magnetic field is concentrated near the capacitor, and hence, we expect only 

small errors in the value of the inductance. I

The formula for the self-inductance L of each plate for a uniform distribution 

of current is given by

where the Geometric Mean Distance (GMD) d is

d = 0.22313 b cm . (8.15)

n H enry  , (8.14)
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The mutual-inductance 9JI between the two plates is given by the formula (8.14), 

where L  is replaced by 971 and the GMD d is calculated as follows.

logc (<£) =  loge(h) +  |  ^1 -  p - j  loge (h2 +  62) +  ta n "1 |  , (8.16)

where h is the distance separating the two plates. Note that the units for distances 

used in the above inductance formulas must be in centi — m eter, and the inductance 

is obtained in nano — Henry.

The total inductance of the two conducting plates is a combination of the self

inductance of each plate and the mutual-inductance between the two plates. The 

total inductance is calculated as follows. The matrix equation

■2u,i ^1,2
-̂ 2,1 ^2,2

is solved to determine the currents I\ and I 2 in each plate, where V  is the voltage 

applied to the ends of the plates. The entries in the impedance m atrix are as follows.

Ziti =  R  +  iu}L for i =  {1,2} ,
(8.18)

Z ij  =  iu>DJt for i , j  = {1,2} and i ^  j  

where the resistance of each plate is given by

R = - L - b . (8.19)

The total impedance of the two conducting plates is

V
( h  +  I 2 )2  =  77-T-FT > (8-20)

and the total inductance is

and the total resistance is

Ltotal — —  j ( 8 .2 1 )u>

Rtdtal — Z T , ( 8 .2 2 )
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where Z  =  ZT +  iZ l . The numerical values for the total resistance and inductance 

in the second column of Table 8.5, are computed using the above formulas.

The FE solution is calculated using a two step procedure discussed in Algo

rithm 9.2. In the first step, the scalar potential rp is computed from the imposed 

voltage V  at the ends of the plates. Figure 8.24 shows the boundary conditions. We 

impose ipT =  — 1/u; on the left end and tpT =  -fl/u> on the right end of the plates. 

The voltage V  =  iunp, and hence, the boundary conditions for 'ip in Figure 8.24 is 

equal to a voltage of 2i between the ends of the plates. The current obtained from 

this step is used in the second step of Algorithm 9.2 to calculate the vector poten

tial A, and subsequently, the magnetic field B. The resistance and the inductance 

are calculated using the expressions derived in Chapter 5. The results are listed 

in the third column of Table 8.5. The domain in Figure 8.24 is discretized using 

a mesh of 972 nodes and 704 elements; the mesh is shown in Figure 8.25. Form 

the results we observe that the inductance obtained from the FE analysis is smaller 

(by approximately 14%) than the inductance predicted by the formula from Grover 

[1973]. One of the reasons for the difference could be the effects of the size of the 

surrounding air. However, the computational resources limit the size of the airbox. 

We observe, as expected, an increase in the inductance with the increase in the size 

of the airbox. These results were computed using the generalized units system with 

a scaling factor of 103.
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Table 8.5. The the total resistance and inductance for the two con
ducting plates shown in Figure 8.23, with uniform current. The 
FE solution is calculated using Algorithm 9.2 in conjunction with the 
multiple-scale technique. Four different meshes are used with increas
ing size of the surrounding box of air. The results are in the S I  unit 
system.

Method Size of the Resistance Rtotai Inductance Ltotai

airbox (in m eters) (in ohm) (in H enry)

Formula by Grover [1973] — 0.1137 ohm 1.7792 nH

FE solution 0.01 771 0.1137 ohm 1.3406 nH

0.1 m 0.1135 ohm 1.5219 nH

1.0 771 0.1130 ohm 1.5334 nH
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n := [0, l]3
1.0 m

1.0 m

1.0 m

Figure 8.5. The cube for the wave propagation problem.
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0.852116
n 7̂ 272 
0.556441 
0.408604

Figure 8.7. Contour plot for the magnitude of the real paxt of the 
electric field. The slice plane has a normal l.Oei +  1.5ea.

0.772355
0.579266
0.386178
0.193089

Figure 8.8. Contour plot for the magnitude of the imaginary paxt of 
the electric field. The slice plane has a normal l.Oei -f 1.5e2-
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e3

e2

V \

\ \

ST\ 1 \ \

ST \ \ \ \ \

\ \ ^  '
\

k \

Figure 8.9. A vector plot for Er . The slice plane has a normal l.Oei -f 1.5e2.

e f ^ e 2

Figure 8.10. A vector plot for E^. The slice plane has a normal l.Oei +  1.5e2.
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1.2

FE solution 
Exact solutio: 11.0

0.8

U,
W 0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.11. The magnitude of the real part of the electric field along 
a straight line. The line is formed by the intersection of the slice plane 
that has a normal l.Oei +  l-5e2 and the horizontal plane (i.e., x 3 =  0).

0.5

o.o

-0.5

0.2 0.4 0.6 0.8

Figure 8.12. The magnitude of the imaginary part of the electric field 
along a straight line. The line is formed by the intersection of the 
slice plane that has a normal l.Oei +  l-5e2 and the horizontal plane 
(i.e., x 3 =  0).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

E
rr

or

190

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.13. The magnitude of the errors in the field quantities along 
a straight line. The line is formed by the intersection of the slice plane 
that has a normal l.Oei +  1.5e2 and the horizontal plane (i.e., x3 =  0). 
The FE solution is compared with the exact solution.

Ou.u
H

egrees of freedom

Figure 8.14. T2-norm of the error in Er . The solid line is with a 
Neumann boundary condition, and the dashed line is with a Dirichlet 
boundary condition. The three points for each curve corresponds to 
the three meshes for the cube.
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jdir A

n

W< io-'

Penalty parameter

Figure 8.15. Effect of the penalty parameter. The solid line is the L2
error norm of Er (i.e., || AEr H â), and the dashed line is div A
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Penalty =  0 x 10°

P B  so lu tion  
E x a c t s o l a t i a .

1.0

0.4

02
0.0

0.0 0.4 0.6 0.8 1.0

Penalty = 1 x 102

P B  so lu tio n  
E x a c t solution

0.4

02
0.0

0.0 0.4 0.6 0.8 1.0

Penalty =  1 x 10 4

1.4

P B  so lu tion  
B x ac t s o la t i a

1.0

0.6

0.4

0.0
0.0 0.4 0.6 100.8

Penalty =  1 x 106
1.4

PB  so lu tion  
B xac t solution

1.0

0.6

0.4

0 2

0.0
00 0.4 0.6 1.00.8

Penalty =  1 x 108

1.0

0.6

0.4

02

0.0
0.0 0.4 0.6 0.8 1.0

Figure 8.16. Effect of the penalty parameter on Er . The field Er 
is plotted along the r 1-axis passing through the center (0.5, 0.5, 0.5) 
of the cube. The solid line corresponds to the FE solution, and the 
dashed line corresponds to the exact solution.
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.+1 volt

-I  volt

Positive Electrode

1.5 fim

15 fim

1.5 \im

Dielectric

Negative Electrode
0.635 cm

Figure 8.17. A simple parallel plate capacitor. A voltage of +1 Volt 
is applied to the top of the top electrode and a voltage of —1 Volt is 
applied to the bottom of the bottom electrode.
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(a) (b)

(c) (d)

Figure 8.18. Four meshes for the parallel plate capacitor: The mesh 
is refined along the horizontal plane. The mesh (a) has 20 nodes and 
4 elements, the mesh (b) has 45 nodes and 16 elements, the mesh (c) 
has 125 nodes and 64 elements, and the mesh (d) has 245 nodes and 
144 elements.
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6 io'

O 10

Scafing factor
(a)

e  10

~a

2

Scaling factor

00

Figure 8.19. The change in the condition number with the changing 
mesh size and varying scaling factor a z . The plot (a) corresponds to 
the transient solution, and plot (b) corresponds to the time-harmonic 
solution. The solid line is for mesh (a), the dashed line is for mesh 
(b), the dashed-dotted line is for mesh (c), and the dotted line is for 
mesh (d) in Figure 8.18.
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^3 10

Scaling factor 
(a)

10 '

Scaling factor 

00

Figure 8.20. The change in the condition number with varying seeding 
factor q_. The solution uses mesh (a) from Figure 8.18. For the 
transient solution in figure (a), the solid line is with the time step size 
Atn+i =  27t/109 S I  units, dashed line is with Afn+i = 27t/ 107 S I  
units, and dashed-dotted line is with Afn+i =  27t/105 S I  units. For 
the time-harmonic solution in figure (b), the solid line is with angular 
frequency u  =  109 S I  units, dashed line is with u> = 107 S I  units, 
and dashed-dotted line is with w =  10s S I  units.
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G io:

O  10‘

-o
C io  10

Conductivity a  in S I  unit system 
(a)

"d
g  10’

10* 10to io12Conductivity a  in S I  unit system
(b)

Figure 8.21. The change in the condition number with varying conduc
tivity a  of the electrode. The solution uses mesh (a) from Figure 8.18. 
The top figure is at an angular frequency w =  107 S I  units, and the 
bottom figure is at u  = 1011 S I  units. The solid line is with the 
generalized unit system (ax = 103), and the dashed line is with the 
S I  unit system.
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•J310-

Conductivity a m °SI unit system 
(a)

(H

Conductivity a  in°5/ unit system

00

Figure 8.22. The change in the relative error with varying conductivity 
a  of the electrode. The solution uses mesh (a) from Figure 8.18. The 
top figure is at an angular frequency u> =  107 S I  units, and the 
bottom  figure is at u  — 1011 S I  units. The solid line is with the 
generalized unit system (ax =  103), and the dashed line is with the 
S I  unit system.
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+ ;  voij.
Uniform, current /  Electrode

t = 1.5 fim 
— 1 Volt

h =  15 fim

t =  1.5 fim

- 1  Volt

Electrode
I =  0.635 cm

Figure 8.23. Two parallel conducting plates separated by air. Uniform 
current is flowing from the left end to the right end in each conductor.

.Airbox

UJ

•n =  0

.(Vv = +l/cu , ipi =  0)

Figure 8.24. The boundary conditions and excitations imposed on 
the two parallel conducting plates. The amplitude of the voltage is 
imposed on the left and right ends of the conducting plates.
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Figure 8.25. A mesh for the two parallel conducting plates: It has 
972 nodes and 704 elements. The mesh for the surrounding air is 
generated using an exponential distribution.
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CHAPTER 9
TIME-HARMONIC ANALYSIS OF MULTI-LAYER CERAMIC

CAPACITORS

In this chapter, we present time-harmonic solutions to the MLCC introduced 

by Ngo [1990]. The resistance, inductance, and the capacitance are computed as 

a function of the frequency for (i) a single cell in the MLCC and (ii) a 2 x 2 x 3 

stack of cells. The results are compared to the circuit model proposed by Ngo 

[1992] and Anand [1993]. The finite element analysis effectively determines small 

values of the inductance. The equivalent series resistance esr, and the equivalent 

series inductance esl, extracted from the finite element solution, are observed to be 

smaller than the circuit model.

Due to the change in the behavior of the capacitor with frequency, it is nec

essary to choose the appropriate computational algorithm to reduce numerical ill- 

conditioning. Algorithm 9.1 is used to analyze capacitors below 10s H ertz , and 

Algorithm 9.2 is used to analyze capacitors above 10s H ertz. For Algorithm 9.2 

a multiple scale technique is used to improve accuracy. In the solutions presented 

below, the Coulomb gauge is imposed via a penalty method and one-point reduced 

integration.

9.1. Choice of Computational Algorithms

The applicability of the simple RLC circuit model is limited to physical sys

tems whose maximum linear dimension is much smaller than the wavelength of the 

electromagnetic wave. Figure 9.1 is an example of a typical electromagnetic wave, 

where A is the wavelength and /  =  u;/(2ir) is the frequency. Remark 9.1 explains

201
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the relation between the wavelength A and the frequency /  for different materials. 

In other words, the physical size of the system is small enough to neglect the time 

needed for propagation of the electromagnetic signals. As a consequence, all the 

quantities in the system (i.e., the circuit) can be measured at the same time. From 

the power point of view, the wavelength is small enough to neglect any power loss 

due to radiation. A concise explanation of the approximation can also be found in 

Kraus [1984, p. 446] and Wangsness [1986, pp. 449-451].

The lumped parameters (R, L, and C ) obtained from a FE solution is a 

simplification to the Maxwell equations. As the behavior of the capacitor changes 

with the frequency, the lumped parameters (R, L, and C) computed form a FE 

solution also change. Care must be exercised at higher frequencies to ensure that 

the dimension of the largest element in the mesh is significantly smaller than the 

wavelength; a thumb rule is to have the mesh size smaller than one-eighth of the 

wavelength.

For the MLCC proposed by Ngo [1990], the footprint of the capacitor is ap

proximately 2.54 x 10-2 m x 2.54 x 10-2 m, and the thickness is approximately

4.5 x 10-4 m. From Figure 9.2 we estimate that the simple RLC circuit model in 

Figure 5.1 for the capacitor is applicable to frequencies lower than 10s H z. Note 

that at microwave frequencies (109 H z  and above) the circuit model could give 

erroneous results. The circuit models developed by Anand [1993] is an effort to 

increase the applicability of the circuit models to frequencies above 10s H z. The 

circuit proposed by Ngo [1992] divides the capacitor into numerous small cells. The 

footprint of a single cell is 6.35 x 10-3 m  x 6.35 x 10-3 m  and the thickness is 

approximately 1.8 x 10-5 m. Each of these cells are further divided into half-cells. 

These half-cells are modelled by a simple RLC circuit. As the dimensions of each 

cell is much smaller them the entire capacitor, the applicability of the circuit model
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is increased to beyond 107 Hz.

Remark 9.1. The change in the wavelength of the electromagnetic wave with 

the changing excitation frequency for the materials used in the MLCC is given in 

Figure 9.2. The properties of the materials were listed in Table 7.1. The velocity of 

a plane wave in a conductive media at a frequency /  =  o;/(27r) is

o 'i1/2
. - 4=/:

where the

<2 =  ^ .  a

The dimensionless parameter Q can also be written as

n _ \ d D / d t \

Q  IJ/I ’

i.e., the parameter Q is a measure of the relative importance between the displace

ment current and the conduction current. For conductors Q «  1, and for insulators 

Q >> 1. However, note that the behavior is frequency dependent. For air and the 

dielectric ceramic, the velocity v inside the material is given by

1
v  =  ’

and for the conductors sliver palladium and copper the velocity inside the material 

is

The wavelength A inside a medium is given by

A =  f  v ,

where /  =  u}/(2-k) is the frequency of the electromagnetic wave. The skin depth 8 

for a conducting material, is defined as the distance inside the material at which the
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magnitude the field decreases by a factor of 1/e. The skin depth 8 is related to the 

wavelength A as follows:

s ~ a -

Increasing the frequency, decreases the skin depth. See Wangsness [1986] or Kraus 

[1984] for a more detailed explanation on electromagnetic wave propagation.

I

The behavior of a capacitor can be described by a combination of the follow

ing three physical processes: The current flow in the conductors (characterized by 

the current density J /)  is coupled with the electrical energy stored in the dielectric 

(characterized by the displacement field D) and the induced magnetic field (char

acterized by the magnetic field H). At low frequencies the electromagnetic problem 

in the capacitor can be decoupled such that the electric field inside and surrounding 

the capacitor is determined first and then the induced magnetic field is calculated. 

This decoupling between the electric and the magnetic field is possible because the 

power due to electric field dominates the power due to the magnetic field.

The partial differential equations (PDEs) solved to determine lumped param

eters for the time-harmonic electromagnetic problem (2.33) is the Ampere’s law

curl H 0 -  iu  D 0 -  j / 0 =  Joo , 

and the continuity equation

iu) {div Do j  +  div J /0 =  0 .

Recall that the current density

J /0 =  —iauj grad ip — iau; A  ,
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v  =  /  A

Amplitude

Wavelength A

Figure 9.1. An electromagnetic wave: The amplitude of the wave ver
sus length at a fixed instant in time. The wave velocity v depends on 
the material. Inside a conductor (a dispersive medium) the amplitude 
of the wave is damped.

• Air

 Silver Palladium

—  Copper 

 Ceramic

10'5 105ur
f  = z z ( ' n H z )

Figure 9.2. The wavelength A of the electromagnetic wave as a func
tion of frequency /  inside different materials.
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the displacement electric field

Do — —zclu grad ip — icui A  ,

and the magnetic field

Ho =  — curlAo , 
f*

are defined in terms of the magnetic vector potential A 0 and the time-integrated 

scalar potential Tp0. The conductivity cr, permittivity e, and the permeability fi axe 

piece-wise linear functions of position. Using the above potentials we rewrite the 

PDEs to be as follows: The Ampere’s law

curl curl A^ -f iau> A  — eu>2 A + iuj (cr grad ijpj — uj2 (e grad rp̂ j

= Jao i

and the continuity equation

-t-iuj div (cr A) — u 2 div(e A) +  iu  div (cr g rad ^ ) — u j2 div grad ̂

=  0 ,

axe solved by FE method using the appropriate boundary conditions to determine A 

and ip. The coupling between the A and the tp potentials is decided by the Coulomb 

gauge

div A =  0 .

In the present implementation, the Coulomb gauge is imposed via the penalty 

method. Inside an homogeneous material we have div (cr A) =  0 and div (e A) =  0. 

However, for regions with discontinuous material properties we cannot make such a
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simplification. Hence, the PDEs to be solved are reduced to

curl curl A J +  icruj A — ecu2 A +  iu> (a  grad tp) — u 2 (e grad 'ip')

+ A ^ (d iv A ) =  Ja0 , 

+iui div (cr A) — cu2div (e A) +  icudiv (a g rad ^ j — u j2 div (e grad •ip) =  0 ,

(9.1)

where |? is the penalty parameter.

The large difference in the numerical values of the material properties \i, e, 

and a are detrimental to the numerical conditioning of the above equations. The 

numerical significance of each of the terms in the (9.1) can be determined only 

upon accurate solution. However, a simplistic approach is to examine the numerical 

values of the coefficients of the different terms in (9.1) for the material properties 

listed in Table 7.1 as a function of frequency. Figures 9.3 and 9.4 explains the 

numerical behavior of curl curl A ) , cru/A, and ecu2 A as a function of the angular 

frequency cu in the S I  and the generalized unit systems, respectively. We assume 

that the material is silver palladium and the geometric dimensions are that of an 

electrode inside a single cell. The length I =  10~5 m, and curl (curl A )  ~  A/12. 

We observe that the numerical value for curl curl A ) is significantly larger than 

aujA and ecu2 A , and hence, at the frequency of interest (<  107 H z) we can neglect 

the contributions due to au>A and eu2A . Similar conclusions can be made for 

dielectric material and air. Similarly, from Figures 9.3 and 9.4 we observe that 

the cruip term dominates the etu2ip term. We observe that at low frequencies (i.e., 

less than 107 Hz),  the difference in magnitudes between crunp term  and the euj2ip 

term  is pronounced. An approximation at low frequencies is to neglect the coupling 

between the A and tp terms in the continuity equation, i.e., assume cudiv (a  A) % 0
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i i o 20
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ea;2A|

10 10
a; =  2 ir f

10 10 1015

,40

,20
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15

Figure 9.3. Relative magnitudes, in S I  unit system, of the different 
terms in Ampere’s law and the continuity equations inside an electrode 
of a MLCC.

and u;2div(e A) % 0. Such an assumption implies that we neglect the effects of the 

eddy currents generated in the conducting parts. Recall that the eddy currents are 

defined to be equal to iau; A.

In regards to the FE solution to the electromagnetic problem, this large differ

ence in the magnitudes of the different terms involved in the differential equations
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curl curlAJ

eu> A

(Jj =  2 TJ
,20

,-40

Figure 9.4. Relative magnitudes, in generalized unit system, of the 
different terms in Ampere’s law and the continuity equations inside an 
electrode of a  MLCC. The scaling factor is a x =  103. The frequency 
range is same as that used for Figure 9.3.

translates to an ill-conditioned matrix. The consequence is poor numerical accu

racy and in some cases intractable matrices. We propose to alleviate the numerical 

ill-conditioning at low frequencies by introducing simplified algorithms. At low fre

quency we the electric and magnetic problems into two parts: First we solve for
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the scalar potential ip, and later use the scalar potential to determine the vector 

potential A. We neglect ccjA  and eu/2A. We introduce Algorithm 9.1 to solve 

electromagnetic problems at low frequency. At higher frequencies it is imperative to 

solve the coupled electromagnetic problem; Algorithm 9.2 solves the complete elec

tromagnetic problem with no simplifications. However, we use a two step method 

improve the accuracy of the solution.

In the particular case where the permeability fi is constant inside the volume 

fi enclosing the capacitor, we can make simplifications to Algorithms 9.1 and 9.2. 

The term

curl curl A^ =  grad j  x ( curl A.) +  ^ curl (curl A)

=  grad x ( curl A) +  grad (div A.) -  div (grad A.)

Imposing the Coulomb gauge (div A =  o) and assuming that the permeability fi is 

constant, i.e., grad ( ^  =  0, we have

curl curl A j  j  div (grad A ) .

The Ampere’s law in (9.1) is reduced to 

— ^ div (grad A.) +  ictljA. — ecu2 A  +  iuj (cr grad tp̂ j — u j 2 (e grad tpj

+ A -(d iv A )2 = J ao,
^ (9.2)

as a consequence of the above simplification. At low frequencies we could simplify 

the above equation to

— | | div (grad A ) + iuj (cr grad if) — u j 2 (e grad ip'j

2 (9'3) 
+A— (div a ) =  Jao •

fi  V J
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Algorithm 9.1. Problem with conductors, low frequency excitation.

S tep  1. Determine the scalar potential. Solve the equation

—iu;div (ar grad ip) +  u 2 div (e grad ip) =  0 ,

for the scalar potential ip £ C inside the region fi. A voltage (iuip) is
specified at select points on the surface of the conductor.

S tep  2. Determine the magnetic field in all the materials, i.e., the conductors, 
dielectric and air. Solve the equation

curl f — curl A
V/*

for vector potential A 6 C3 inside the region fl. The scalar potential ip is
obtained from Steps 1. The penalty parameter \> is chosen such that the
Coulomb gauge (div A = 0) is imposed.

 |

In the capacitor if we choose to only impose voltage and not current, then Jao = 0, 
and hence, the above equation simplifies to

j-'j div (grad A)  +  A — (div A.)2

=  — icj (<r grad ip) +  u j2 (e grad ip) .

The solution to the above equations for simple geometry of the conductor can be 

obtained in terms of spherical harmonics;29 see e.g., Kellog [1953]. Hedlund and 

Nou [1989] uses the above simplification to solve simple magnetostatic problems. 

However, in the present computer implementation we choose not to include the 

above simplifications. This allows an extension of the present work to problems 

where the permeability fj. is not constant. Moreover, the general case permits the 

use of other gauge conditions discussed in Chapter 2.

29 The solution using the spherical harmonics satisfies the Coulomb gauge; see e.g., Wangsness 
[1986, p. 252].
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Algorithm 9.2. Problem with conductors and high frequency excitation. 

S tep  1. Solve the equation

—iu/div (<j grad p') +  u 2 div (e grad ip') = 0 ,

for the scalar potential ip' G C inside region Q. A voltage (iuxp') is specified 
at select points.

S tep  2. Solve the equations

curl f — curl A ) +  icru A — ecu2 A
V/* I

+  iou div (cr grad <p") — ui2 div (e grad rp")

+t> — (d iv  A )p V J

=  —iujdiv (a  grad ip') + u 2 div (e grad <p’) ,

itudiv cr A  — a;2div e A +  iu;div (cr grad ip") — tv2 div (e grad <p") =  0 ,

for the vector potential A  6 C3 and the reduced scalar potential ip" 6 C 
inside the region SI. The scalar potential ip' is obtained from Step 1. The 
total scalar potential is given by =  ip' +  ip"■ The penalty parameter \> is 
chosen such that the Coulomb gauge (div A =  0) is imposed. Note that the 
potential ip" is constrained to zero at all points where the voltage (iujtp') is 
specified.

9.2. FE Model for a Single Cell

The single cell in Figure 7.3 and the surrounding box of air are discretized 

using hexahedral brick elements. A typical mesh including the surrounding box 

of air is shown in Figure 9.5. The mesh has 876 nodes and 756 elements. Figure 

9.6 shows a typical mesh of the single cell without the surrounding air. Note that
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increasing the number of nodes in the conductor leads to a significant increase in the 

number of nodes in the surrounding airbox. We study the effects of mesh refinement 

and the size of the airbox. We conclude that refining the mesh beyond the 876 nodes 

as shown in Figure 9.5 has an insignificant effect on the lumped parameters. The 

number of elements in the airbox does not effect the lumped parameters. However, 

with an increase in the size of the airbox we observe an increase in the inductance. 

The present computational resources limit the size30 of the airbox to 1.0 m, i.e., 

approximately 1000 times the length of the conductor. In the results presented here 

we use an 1.0 m  airbox and a mesh of 876 nodes. A voltage of +1 Volt is prescribed 

on opposite sides of the top electrode, and a voltage of —1 Volt is prescribed on 

opposites sides of the bottom electrode. The voltage is prescribed such that the 

current flow in the top electrode is perpendicular to the current in the bottom 

electrode. The boundary conditions are explained in Figure 9.7.

Figure 9.8 shows the current distribution inside the electrodes. It is evident 

that unlike the assumptions in the circuit model, the distribution of current is not 

linear. Figure 9.9 and Table 9.2 compare the impedance predicted by the FE solution 

to the impedance obtained from the circuit model proposed by Ngo [1992]. Smaller 

values for esr and the esl axe obtained using FE analysis. This difference in the 

lumped parameters can be explained by the change in the current distribution.

The circuit model for the single cell is shown in Figure 9.10, and the numerical 

values of the components are listed in Table 9.1. The construction of the circuit 

model is explained in Anand [1993], however, a brief overview of the model is also 

presented below in Remark 9.2.

Remark 9.2. To construct a circuit model for the MLCC we divide the entire

30 The size of the airbox refers to  the length of the cube of air surrounding the capacitor.
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Table 9.1. Numerical values for the lumped parameters in 
Figure 9.10 for a single cell.

Circuit parameter 
parameters

Numerical value 
( S I  units)

Rll_3 = R11.5 =  R ll_4 = R11.6 3.777 x 10-2 ohms
Lll_3 =  L11.5 =  L11.4 = L11.6 2.85 x lO"10 H enry
C ll-1 3.56850 x 10-8 Farad
K ll_ l =  Kll_2 -5 .64  x lO"1

Table 9.2. Equivalent circuit parameters for a  single cell of the MLCC.

Circuit
parameters

Circuit model 
by Ngo [1992]

FE solution

esr 3.7783 x 10"2 ohms 3.5402 x 10-2 ohms
esl 1.2355 x lO-10 Henry 1.1995 x lO-10 H enry
s r f 7.5509 x 107 H z 7.6926 x 107 H z
Capacitance 3.5685 x 10~8 Farad 3.5685 x lO"8 Farad

MLCC into 4 x 4 =  16 stacks as shown in Figure 7.1. Each stack consists of 

positive and negative electrodes sandwiched between the top and bottom bus; a 

single stack is shown in Figure 7.2. Each dielectric layer inside the stack together 

with its positive electrode and negative electrode is termed as a “cell.” A single 

cell is shown in Figure 7.3. Ngo [1992] proposed a circuit model (see Figure 9.11) 

for each stack of cells. The numerical value of the resistance and the inductance of 

the circuit in Figure 9.11 depends on the number cells in each stack. To construct 

a circuit model for more than one stack of cells, we connect the the circuit model 

for each stack of cells in a novel architecture. The entire procedure is described in 

detail in Anand [1993].
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We assume a linear distribution of current in each electrode. In Figure 7.2 we 

assume that the current is maximum at the edge close to the vias, and is zero at the 

center of the electrode. An estimate for the resistance and the inductance of each half 

of the electrode can be obtained assuming this linear distribution of current. Using 

formulae from Grover [1973] we can estimate the inductance of each half-electrode 

and mutual inductance between two half-electrodes. Note that the current in the 

positive electrode is perpendicular to the current on the negative electrode. Hence, 

we assume that there is no mutual inductance between the positive and negative 

electrodes.

The formula for the self-inductance L of each half electrode for a uniform  

distribution of current is given by

where the Geometric Mean Distance (GMD) d is

d =  0.22313 b cm , (9.6)

where I is the length of the half-electrode, and b its width. For the single cell in 

Figure 7.3, I =  0.3175 cm, b = 0.508 cm, and the thickness t =  1.5 x 10~4 for 

each half-electrode. The mutual-inductance 97t between the positive or negative 

half electrodes is given by the formula (9.5), where L is replaced by 9Jt and the 

GMD d is calculated as follows.

loge (d) = ^  loge(h) +  i  ^1 -  loge ([h2 +  b2) + 2 ^  ta n -1 ^  |  , (9.7)

where h is the distance separating the two half-electrodes. Note that the units for 

distances used in the above inductance formulas must be in centi — meter, and the 

inductance is obtained in nano — Henry.

n H enry  , (9.5)
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The total inductance of the n half-electrode is a combination of the self

inductance of each half-electrode and the mutual-inductance between the two half- 

electrodes. The total inductance is calculated as follows. The matrix equation

(9.8)

is solved to determine the n  currents 7i, in half-electrode, where V  is the

voltage applied to the ends of the half-electrode. The entries in the impedance 

matrix axe as follows.

A l Z \ f i 3
1

'  h '

"■ IIS?1 Z n , 2 ••• Z n in

< > =  <

Zi,i =  R  +  iu)L for i = {1, • • •, n}  ,

Z ij  =  iuVJl for i , j  =  {1, • • •, n} and i ^  j  , 

where the resistance of each plate is given by

s - i -  '

(9.9)

3 £7 t b

The total impedance of the stack of n  half-electrodes is

V

(9.10)

Z  =
{I\ +  • • • +  /„)

and the total inductance is

and the total resistance is

where Z  =  ZT +iZ{.

L  total — >aJ

R to ta l  — Z r  ,

(9.11)

(9.12)

(9.13)

To recapitulate, we divide each stack of electrodes into four half-stacks as 

shown in Figure 9.11. The resistance and the inductance of each of the half-stack of 

electrodes is obtained from the expression derived above. For example, resistance
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R ll-3  and inductance L11.3 corresponds to one positive half-stack. These circuit 

connected to the resistance and the inductance of the top and bottom bus. The 

expressions for the resistance and the inductance of the top and bottom bus can be 

obtained from the formulae listed above. The nodes 1101 and 1103 represent the 

east and west ends of the positive half-stacks, respectively. The nodes 1107 and 1109 

represents the south and the north ends of the negative half-stacks, respectively. The 

capacitance C ll_ l represents the capacitance of the entire stack. Note that there 

exists a mutual inductance between the two positive half-stacks and the two negative 

half-stacks. These coupling factors for the mutual inductances are represented by 

K11.1 and Kll_2.

To construct the circuit model for a group of stacks we connect the adjacent 

nodes, e.g., the east end node of a stack is connected to the west end node of the 

adjacent stack, and so on. However, combining the stacks together requires the 

addition of the mutual inductance between stacks. The calculation of the mutual 

inductance Kll_1 and the others is explained in Anand [1993].

I

9.3. FE Model for a Stack of 2 x 2 x 3 Cells

The stack of 2 x 2 x 3 cells and the surrounding box of air are discretized using 

hexahedral brick elements. A typical mesh including the surrounding box of air is 

shown in Figure 9.12. The mesh has 3296 nodes and 294 elements. Figure 9.13 

shows a typical mesh of the stack of cells without the surrounding air. Similar to 

the analysis for the single cell, we use an airbox of size 1.0 m. A voltage of +1 Volt 

is prescribed on opposite sides of the top electrode, and a voltage of —1 Volt is 

prescribed on opposites sides of the bottom electrode. The voltage is prescribed 

such that the current flow in the top electrode is perpendicular to the current in
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Table 9.3. Equivalent circuit parameters for a stack of 2 x 2 x 3 cells 
of the MLCC.

Circuit
parameters

Circuit model 
by Ngo [1992]

FE solution

esr 5.828 x 10-3 ohms 3.920 x 10-3 ohms
esl 5.283 x 10~n  Henry 4.650 x 10-11 H enry
s r f 3.802 x 107 H z 3.765 x 107 H z
Capacitance 2.7778 x 10-7 Farad 3.5857 x 10-7 Farad

the bottom electrode. These boundary conditions are similar to that shown in 

Figure 9.7.

Figure 9.14 shows the current distribution inside the electrodes. It is evident 

that unlike the assumptions in the circuit model, the distribution of current is not 

linear. Figure 9.15 and Table 9.3 compare the impedance predicted by the FE 

solution to the impedance obtained from the circuit model proposed by Ngo [1992], 

Smaller values for esr and the esl are obtained using FE analysis. This difference in 

the lumped parameters can be explained by the change in the current distribution. 

The difference in the capacitance is explained as follows. The capacitance in the 

circuit model is simply estimated by

10 x 10~6
—---- -----—  x (2 x 2 x 3) =  2.778 x 10~7 Farad  ,
(4 x 4 x 27) '

however, the capacitance from the FE analysis is computed by the accurate distri

bution of the scalar potential.

The circuit model for the single cell is shown in Figure 9.16, and the numerical

values of the components are listed in Table 9.4; see Remark 9.2 for details regarding

the circuit model.
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Table 9.4. Numerical values for the lumped parameters in 
Figure 9.16 for 2 x 2 x 3  stack of cells without the top and bottom 
bus.

Circuit parameter 
parameters

Numerical value 
(S I  units)

All resistance 1.889 x 10-2 ohms
All inductance 2.834 x lO '10 H enry
All capacitance 6.944 x lO '8 Farad
Mutual inductance Varies depending on the 

location of the half-stacks
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Figure 9.5. A mesh for a single cell including the surrounding air. The 
capacitor is sliced along a vertical plane passing through the center.

Figure 9.6. A mesh for the electrodes and the dielectric for a single cell.
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irbox

(Vt =  -1 /^ : , A  =  0)

n = 0

( tp r  =  + l /u >  , i/'t =  0)

Figure 9.7. The boundary conditions and excitations imposed on the 
two electrodes in a single cell.
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4344.66
3475.73
2606.79
1737.86
666.931

Z

Figure 9.8. The current in the conductors of a single cell at frequency 
/  =  H z. We observe that the distribution of current in the 
electrodes is not linear. The current in the top electrode is along 
the x-direction, and the current in the bottom  electrode is along the 
y-direction.
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t
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.010

10‘ ‘

1-210‘
.0 ,2 4 TO10 10‘ 10 10' 10

Figure 9.9. The impedance of a single cell as a function of frequency. 
The frequency /  =  H z. The solid line is from finite element 
analysis and the dotted line is from the circuit model.

K i l l K11.2
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222221H

R1I 6
WWW
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R ll 3 L I I 3 Rll_4

22222JM
Lll_4

VIN

Figure 9.10. A circuit model for 1 x 1 x 1 stack of cells without the 
top and bottom bus.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

224

positive half-stacks

negative half-stacks

North endEast end. West end

South end

negative bus
Kll_l Kll_2

LlÎ S /

1104

 fix 1105 4

L ll_3

Rll_5 R ll_6 L ll_6
4107

C l l_ l 1106 R ll_ iR ll_ l
i t  1112

£n_i

L ll_4

L U  2

llH
R11_3 R ll_4

Figure 9.11. A circuit model for a stack of cells with the top and bottom bus.
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i r ^ 9d i s «  £  *  su “ d  ^  a  v e rtica l p la a e  p a ssin s
through the center.

A
&

Figure 9.13. A mesh for the
electrodes in  th e  2 x 2 x 3 stack of cells.
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V35

6082.52
5213.59
4344.66
3475.73
2606.79
1737.86
868.931

Figure 9.14. The current in the conductors of a 2 x 2 x 3 stack of cells 
at high frequency. The frequency /  =  ^  H z. The current in the 
top electrode is along the y-direction, and the current in the bottom 
electrode is along the x-direction.
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10'

.S10

.0
10 '

•t
10'

to'

10 ' ,2 .to10 10‘ 10 ' 10

Figure 9.15. The impedance of a stack of 2 x 2 x 3 ceils as a  function 
of frequency. The frequency /  = H z. The solid line is from finite 
element analysis and the dotted line is from the circuit model.
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Negative node

Figure 9.16. A circuit model for 2 x 2 x 3  stack of cells without the top 
and bottom bus. The mutual inductance is not shown in the above 
circuit.
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CHAPTER 10 
CLOSURE

We analyze new advanced MultiLayer Ceramic Capacitors (MLCCs) using 

the Finite Element (FE) method. We compute the lumped parameters—the resis

tance R, the inductance L, and the capacitance C—of a MLCC designed by Ngo 

[1990]. The behavior of the capacitor depends on the frequency of excitation. At 

low frequencies, the capacitive reactance dominates. At very high frequencies the 

inductance dominates. However, in between (from 10s to 108 Hertz), the interaction 

between the R, L, and C decides its behavior.

We introduce a multiple-scale technique to transform Maxwell equations from 

the S I  unit system to a new generalized unit system. Scaling is useful to analyze a 

MLCC that has a complex geometry and a mixture of regions of finite conductivity 

and zero conductivity. For these miniature devices at the frequency of interest 

(below 107 Hz),  in the S I  unit system, the numerical values of the terms related to 

the electric current is substantially larger than those that are related to the other 

physical processes. The consequence is ill-conditioned matrices that make accurate 

analysis impossible.

In this work, we demonstrate that a suitable choice of the scaling parameter 

shifts the focus of the problem away from the dominating effect of the conductors, 

and as a consequence, reduces the condition number and significantly improves the 

accuracy. Moreover, the multiple-scale technique offers the flexibility to adjust to 

different geometrical shapes and material properties of the electrical components.

We use a coupled formulation with a choice of two algorithms to compute R,

229
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L, C  of the MLCC at different frequencies. The low frequency algorithm is used 

at frequencies significantly below the self-resonant frequency (s r f ), and the high 

frequency algorithm is used close to or above the s r f .  The s r f  for a 10 fiFarad  

MLCC designed by Ngo [1990] is in the order of 107 H z. We develop a new FE 

code that combines the the multiple-scale technique with the two algorithms to 

compute accurate values for R, L, and C . Sophisticated mesh-generation routines 

are also developed to mesh the complicated geometrical shapes of the components 

that comprise the MLCC.

At zero frequency, the capacitance C of the 10 fiFarad MLCC computed using 

FE analysis shows a 20% difference from the experimental value. This difference is 

explained by changes in the geometry and the m aterial properties during manufac

turing.

At higher frequencies, the coupling between the electric and magnetic fields 

increases the size of the matrix equations. The available computer resources limit 

the time-harmonic analysis of the coupled electromagnetic problem to 2 x 2 x 3 stack 

of cells. The results presented in this dissertation reveals the distribution of current 

in the electrodes: Unlike the distribution assumed by the circuit model proposed by 

Ngo [1992], the distribution of current is not strictly linear. The lumped parameters 

R  and L computed using FE analysis is smaller than those predicted by Ngo [1992]’s 

circuit model.

The coupled formulation for electromagnetic problems, combined with newly 

developed mesh generation utilities, and the use of a multiple-scale technique, pro

vides accurate analysis of advanced capacitors. This work demonstrates the efficacy 

of FE analysis in computing small values of inductance L. This formulation and 

implementation are applicable to design and analyze next-generation MLCCs and 

other passive electromagnetic devices.
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APPENDIX A 
CIRCUIT SIMULATOR

In the present work we use a circuit simulator called ACS (Al’s Circuit Simulator) 

developed by Albert Davis, Rochester, NY (Davis [1996]). ACS is similar to SPICE, 

however, it is written in C + +  and is a public domain software. Entire package 

can be obtained from f tp ://m a m m o th .lle .ro c h e s te r .e d u /p u b /lo c a l/a c s . ACS 

provides a convenient interactive tool to simulate DC, AC, and transient circuits. 

It provides a “true” mixed mode simulation between analog and digital devices. 

The author claims that an input file for ACS can be used with SPICE, and vice- 

versa, with minimal changes. ACS also has a simple behavioral modeling language 

that allows simple description of the behavior of various components ranging from 

capacitors to MOSFETS.

In our present research we use the results from ACS to compare with the 

lumped parameters obtained from the FE solution. The the input file for ACS is 

similar to SPICE. For example, a simple circuit in Figure A .l models a single stack 

of 1 x 1 x 14 cells in a capacitor, where the geometry of each cell is described in 

Figure 7.3. The circuit model does not include the top and bottom bus. Hence, the 

behavior of the 1 x 1 x 14 is slightly different from the model in Anand [1993, p. 

48]. The numerical values for the resistances, inductances, and the capacitance in 

the circuit model are same as in Anand [1993, p. 48]; this model has been explained 

earlier in Chapter 9. The ACS input file 1 .1 .1 4 . c e l l s . ck t for the circuit in 

Figure 7.3 is as follows.

* I n p u t  file  f ro m  A CS V ersion  0 .19 :
* (FVi F eb  2 18:58:14 E S T  1996)

231
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* 1 z  1 x  14 s ta c k  o f  ce lls  w ith o u t th e  to p  a n d
* b o t to m  b u se s .

*  D efine  th e  re s is to rs
* N a m e N o d e  1 N o d e  2 V alue
R l l '3 1101 1111 0.0034
R l l ’4 1112 1110 0.0034
R l l ‘5 1101 1104 0.0034
R l l ’6 1112 1106 0.0034

* D efine th e  in d u c to r s
* N am e N o d e  1 N o d e  2 V alue
L l l ’3 1111 1105 0.31512e-09
L l l ’4 1110 1109 0.31512e-09
L l l ’5 1104 1105 0.31512e-09
L l l ’6 1106 1109 0.31512e-09

* D efin e  th e  c a p a c ito r
* N a m e  N o d e  1 N o d e  2 V alue
C l l ' l  1105 1112 0 .625e-6

* D efin e  th e  c o u p lin g  coeffic ien t b e tw een  th e  in d u c to rs
* N a m e  I n d u c to r  1 In d u c to r  2 C o u p lin g  coeffic ien t
* M 'ij /  sq r t(L 'i* L ’j )
K l l ’l  L l l '3  L l l ’5 -0 .54214
K l l '2  L l l ’4 L l l ' 6  -0 .54214

* In itia l iz e  th e  v o lta g e s  
«

* N a m e  N o d e  1 N o d e  2 V alue
V IN  1101 1109 AC 1.0

* A C v a lu e  o f  in p u t  v o ltag e
* T h is  is a n  in d e p e n d e n t
* v o ltag e  so u rc e

V G  1109 0  0
* D C  a n d  A C  v a lu e  a r e  zero

* S p ec ify  th e  p a r a m e te r s  t h a t  n e e d  to  b e  p r in te d  fo r  A C  a n a ly s is
* V M (1 1 0 1 ) M a g n i tu d e  o f  v o ltag e  a t  1101
* IR (V TN ) T h e  r e a l  p a r t  o f  th e  in p u t  c u r re n t
* I I(V IN ) T h e  im a g in a ry  p a r t  o f  th e  in p u t  c u r re n t
* T h e  im p e d a n c e  is Z =  V M  /  ( IR  +  i* II)
.P R IN T  A C  V M (1 1 0 1 ) IR (V IN )  H (V IN )

* P e r fo rm  th e  A C a n a ly s is .  T h e  freq u en cy  is sw ep t lo g a r ith m ic a lly  b y
* d e c a d e s .
* in u m b e r  o f p o in ts ^  =  1000
* ; s ta r t  valued  =  100
* ;e n d  v alued  =  1000M E G
* T h e  k ey w o rd  ” B a s ic ” m a k e s  th e  ta b u la r  d a ta  in  s t a n d a r d  fo rm a t
* t h a t  c a n  b e  u se d  b y  M A T L A B  
-A C B a sic  D E C  1000 100 1000M E G

* E n d ;  d o  n o t  r e tu r n  to  in te ra c t iv e  m o d e  
•E N D

The circuit simulator ACS is installed in the directory v in a y /l ib /a c s .
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Figure A.I. A circuit model for 1 x 1 x 14 stack of cells without the 
top and bottom bus.

can access the code by typing the following com m a n d s  on aemes, a DEC-ALPHA 

machine, with OSF 2.0+ operating system.

'/, cd " v in a y / l ib /a c s

acs0 1 9 .d ec -a lp h a -o sf 1 .1 .1 4 .c e l l s .c k t  > a c s .o u t

The tabular output (ACS does not include graphics) that is saved in the file 

a c s . out can be used in MATLAB to plot the results. A sample of the output file 

a c s . out is as follows.

A C S (A l’s C irc u it  S im u la to r )  0 .19
N e v e r  t r u s t  a n y  v e rs io n  less  t h a n  1.0
C o p y rig h t 1994, A lb e r t  D av is
A C S com es w ith  A B S O L U T E L Y  N O  W A R R A N T Y
T h is  is  free  so ftw are , a n d  y o u  a re  w elcom e
to  r e d is t r ib u te  i t  u n d e r  c e r ta in  c o n d it io n s .
S ee  th e  file "C O P Y IN G ” fo r  d e ta i ls

# F r e q V
100. 1.
100 .23 1.
100 .46 1.
100 .69 1.

V M (1101) IR (V IN ) U (V IN ) 
-5 3 8 .4 E -1 2  -39 2 .7 E -6  
-5 2 3 .9 E -1 2  -393 .6 E -6  
-5 2 3 .9 E -1 2  -3 9 4 .5 1 E -6  
-5 3 8 .4 E -1 2  -3 9 5 .4 2 E -6
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3o6.23E-t-6 I. 
9 8 8 .5 5 E + 6  1. 
9 9 0 .8 3 E + 6  1 . 
9 9 3 .1 2 E + 6  1. 
9 9 5 .4 1 E + 6  1. 
9 9 7 .7 E + 6  1. 
l . E + 9  1.

•0 .004268  1.1187 
-0 .0042484  1.1162 
-0 .0042288  1.1136 
-0 .0042094  1.111 
-0 .0 0 4 1 9  1.1085
-0 .0041708  1.1059 

-0 .0041516  1.1034

A plot of the impedance versus frequency is generated using the values in the 

a c s .o u t;  The variation of the magnitude and the phase angle of impedance are 

plotted in Figure A.2. Recall that the impedance

- V
Z  =  ~y  = ZT +  iZi .

The following MATLAB code is used to generate the figure and calculates the esr, 

esl, ans s r f .

c le a r  a l l  
lo a d  a c s .d a t

% F re q u e n c y  
f  =  a c s ( : , l ) ;

% v o lta g e  
v m  =  a c s (:,2 ) ;

% R e a l  a n d  im a g in a ry  p a r t  
c r  =  a c s ( : ,3 ) ;  
c i =  a c s ( : ,4 ) ;

% Im p e d a n c e  
z  =  v m  . /  ( c r  +  i* d ) ;

% P lo t  t h e  m a g n iu d e  
z m  =  a b s (z ) ;  
zp  =  - a t a n ( c i . / c r ) ;

% P lo t  th e  m a g n itu d e  
lo g lo g (f ,z m ); 
r l a b e l ( ’f re q u e n c y ’) 
y la b e l( 'M a g n itu d e ')  
p r in t  -d p s  m a g .p s  
p a u s e
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Table A.I. Equivalent circuit parameters: For the circuit in
Figure A.l, i.e., a stack of 1 x 1 x 14 without the top and bottom 
bus.

Circuit
Param eter

Analytical
formula

Analytical
value

From ACS

esr R 3.4000 x 10-3 ohms 3.4000 x 10-3 ohms
esl L -V J l 1.4428 x lO"10 H enry 1.4423 x lO"10 Henry

s r f
1

1.6762 x 107 H z 1.6749 x 107 H z
2ttJ L C

Capacitance C 6.25 x 10-7 Farad 6.25 x 10-7 Farad

% P lo t  th e  p h a s e  
se m jlo g x (f ,z p * 1 8 0 /p i) ;  
x la b e l(  'f re q u e n c y  ’) 
y la b e l( ’P h a s e  a n g le ')  
p r in t  -d p s  p h a s e .p s

% C a lc u la te  th e  e s r  a n d  srf 
[zz,ii] =  m in (a b s ( z p ) ) ;  
f p r in t f ( l , ’E S R  =  % 19.12e " n ',z m ( ii) )  
f p r in t f ( l , 'S R F  =  % 19.12e " n ',f (u ))  
n  =  le n g th (z ) ;
f p r in t f ( l , 'E S L  =  % 19 .12e “n ', - i in a g (z (n ) ) /2 /p i / f (n ) )  
[zz,ii] =  m in ( im a g (z ) ) ;
f p r in t f ( l , ’C A P  =  % 19.12e " n ' , l / i m a g ( z ( l ) ) / 2 / p i / f ( l ) )

The impedance for the simple circuit in Figure A .l is given by the following 

formula.
- _  0 R  +  iuL  — icjfJJl 1 
z “ 2 2 +

where R  is the resistance for all the resistors, L is the inductance for all the in

ductors, C is the capacitance of the capacitor, and 9Jt is the mutual inductance 

between (Lll_3 and Lll_5), and (Lll_4 and Lll_6). Table A .l provides a compar

ison between the values obtained from the above formula to those obtained from 

ACS.
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Figure A.2. The impedance versus frequency for 1 x 1 x 14 stack of 
cells without the bus obtained using ACS. The s r f  =  16.75M H z, 
the esr =  3.41 x 10-3 ohm s, the esl =  1.44 x lO-10 H enry, and the 
capacitance is 0.625 x 10-6 Farad.
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Figure A.3. A circuit model for 1 x 1 x 14 stack of cells with the top 
and bottom bus.

The circuit in Figure A.3 is an extension to the above example: The circuit 

includes the top and bottom bus. Table A.2 compares the results from the ACS 

circuit simulator to an equivalent SPICE simulation presented in Anand [1993, p. 

54]. An AC voltage is applied between nodes 1101 and 1109. Note that node 1101 

is connected to node 1103, and node 1107 is connected to node 1109. Hence, the 

circuit parameters for the circuit without the bus is same as the one with the bus. 

The variation of the magnitude and the phase angle of the impedance are plotted 

in Figure A.4. From Table A.2 it is evident that there is a difference between the 

ACS results presented here and the results presented in Anand [1993, p. 54]. This 

difference remains to be explained.

We also construct a circuit for the entire 4 x 4 x 27 =  432 cells in the MLCC. 

The construction of the circuit has been outlined in Remark 9.2. A detailed con

struction of the circuit model is presented in Anand [1993]. Once again we observe 

a difference between the ACS results presented here and the results presented in 

Anand [1993, p. 54]. Table A.3 compares the results from the ACS circuit sim-
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Figure A.4. The impedance versus frequency for 1 x 1 x 14 stack of 
cells with the bus obtained using ACS. The s r f  =  16.75M H z, the 
esr =  3.41 x 10-3 ohms, the esl =  1.44 x lO-10 Henry, and the 
capacitance is 0.625 x 10-6 Farad.
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Table A.2. Equivalent circuit parameters: For the circuit in
Figure A.3, i.e., a stack of 1 x 1 x 14 with the top and bottom bus.

Circuit
parameters

From ACS From Anand [1993, p. 54]

esr 3.405 x 10~3 ohms 3.850 x 10-3 ohms
esl 1.442 x 10-1° H enry 1.432 x lO-10 H enry
s r f 1.675 x 107 H z 1.757 x 107 H z
Capacitance 6.25 x lO"7 Farad 6.25 x lO"7 Farad

Table A.3. Equivalent circuit parameters: For the circuit of the com
plete MLCC, i.e., for 4 x 4 x 27 =  432 cells and the top and bottom 
bus.

Circuit
parameters

From ACS From Anand [1993, p. 56] Experimental
results

esr 3.317 x 10-4 ohms 1.290 x 10-3 ohms 6.7 x 10-4 ohms
esl 1.827 x 10~u  Henry 6.957 x 10- u  Henry 1.480 x 10- u  Henry
s r f 1.142 x 107 H z 6.030 x 107 H z 1.300 x 107 H z
Capacitance 1.0 x 10-5 Farad 1.0 x 10-5 Farad 1.0 x 10-5 Farad

ulator to an equivalent SPICE simulation presented in Anand [1993, p. 56]. The 

configuration of the example considered here, corresponds to Case 1 with contact at 

both sides. The esl predicted from ACS is closer to experiments, however, the esr 

is smaller than the experimental results. The variation of the magnitude and the 

phase angle of the impedance are plotted in Figure A.4; the variation of impedance 

presented in these figures differ from the variation presented in Anand [1993, p. 53].
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Figure A.5. The impedance versus frequency for entire 10 fiFarad  
MLCC, i.e., 4 x 4 x 27 stack of cells with the bus obtained using ACS.
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APPENDIX B
CONSTITUTIVE MODELS FOR HIGH PERFORMANCE

MATERIALS

The volume efficiency of capacitors depends on the magnitude of the permittivity 

of dielectric materials: The higher the permittivity, the larger the capacitance per 

unit volume, and hence the smaller the capacitor. Common dielectric materials 

employed in MLCCs today axe high-permittivity ceramics based on barium titanate 

(BaTiOa). Constitutive laws for polycrystalline ceramic BaTiOa can be obtained 

from constitutive laws for single-crystal BaTiC>3 by means of “averaging” methods 

such as those presented in Mason [1948], Marutake [1956], Yurkevich and Rolov 

[1986], etc. Thus to obtain a good model for ceramic BaTi0 3 , it is important to ob

tain first an accurate constitutive model for single-crystal BaTiC>3 that agrees with 

experimental measurements at various temperatures. Accurate constitutive models 

are essential to maximize the various tensor properties of ferroelectrics leading to

ward optimal design of electrical devices. However, such an accurate constitutive 

model has yet to be obtained. We propose a methodology based on semi-infinite 

optimization to obtain accurate constitutive models for single crystal ferroelectrics 

for all the phases (i.e, for all temperatures).

These high permittivity dielectrics such as BaTiOa are ferroelectric. Ferro

electrics are characterized by reversible spontaneous polarization P 4—i.e., polar

ization at zero electric field—and the existence of hysteresis loops in the relation 

between polarization P  and electric field E. Ferroelectric crystals are pyroelectric 

(electrical and mechanical properties depend on temperature), piezoelectric (me

chanical strains are linearly dependent on electric field), and electrostrictive (strains 

depend quadratically on electric field, i.e., deformation does not change by reversing

241
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the electric field). The remainder of the section will focus on BaTiOa-

Since the late ’40s there has been considerable research to obtain constitutive 

models for ferroelectric material. One of the more popular methods is based on 

the thermodynamic phenomenological theory by Ginzburg [1946] and Devonshire 

[1949]. They successfully extended the basic idea of Landau’s theory of phase tran

sitions to explain the complicated sequence of phase transitions in BaTi0 3  and the 

interrelationships between the macroscopic anomalies accompanying the transitions.

BaTiOa acquires different crystal structures as tem perature (denoted by 8) 

decreases from above the Curie temperature 8C (=  117°C'): cubic (9 > 117°C), 

tetragonal (117°C > 9 > 5°C), orthorhombic (5°C > 8 > —80°C), rhombohedral 

(—80°C’ > 8); see Jona and Shirane [1962, p.110]. The tetragonal, orthorhombic, 

and rhombohedral phases are ferroelectric. Due to the change in crystal symmetry, 

the direction of spontaneous polarization P a changes with the crystal phases. In the 

cubic phase, P a =  0. When the cubic crystal is cooled below the Curie temperature 

into the tetragonal phase, one of the edges of the cube, called the c-axis (3-axis), 

elongates, whereas the other two edges of the cube, called the a-axes (1-axis and 

2-axis), shorten. In the tetragonal phase, P a is along the c-axis (the elongated edge 

of the cube). Since there axe 6 edges (<100> directions) of the original cube, the 

c-axis (polar axis) can be along any one of the six equivalent directions. Similarly 

in the orthorhombic phase, P a is along one of the facet-diagonals (any one of the 12 

equivalent <110> directions of the original cube), and in the rhombohedral phase 

along one of the body-diagonals (any one of the 8 equivalent < 111 > directions of 

the original cube). The number of non-zero components of the perm ittivity tensor 

change with the change in the direction of P a. Most other ferroelectrics display 

first-order transitions, see, e.g., Smolenskiiet al. [1984, p.58]. Single crystal BaTiOs 

also exhibits hysteresis effects Merz [1953].
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The phenomenological model starts with a Taylor series expansion of the gov

erning thermodynamic potential—the elastic Gibbs function—in terms of the inde

pendent variables. The elastic Gibbs function G \, used extensively in the present 

work—with temperature, mechanical stress, and electrical polarization as indepen

dent primary variables—is expanded about the state with zero stresses and zero 

polarization. The coefficients of G* are functions of temperature, and are deter

mined based on experimentally measured properties of the crystal. The resulting 

model is then used to predict other properties of the crystal.

A successful phenomenological model must be able to reproduce the disconti

nuities of ferroelectric properties at the phase transitions, in addition to being able 

to represent accurately the electrical properties such as polarization and permittivity 

within each crystal phase. The electrical properties in the 4 phases of BaTi0 3 , the 

first-order phase transitions and their associated discontinuities requires the imposi

tion of equality and functional-inequality constraints on the coefficients of G\. Thus 

far, ad hoc methods have been proposed to determine the coefficients of G[, yield

ing inaccurate models that violate the constraints (Srinivas and Vu-Quoc [1992]). 

The consequences of these constraint violations are the large errors in the values 

of spontaneous polarization and of permittivity coefficients, erroneous transition 

temperatures, and the absence of one or more crystal phases.

We have proposed and successfully demonstrated a methodology based on 

semi-infinite optimization to determine the unknown coefficients of G\ for BaTiC>3 

(Srinivas and Vu-Quoc [1992]). The optimal solution when used in the model accu

rately predicts the ferroelectric properties of BaTiOs single-crystals—phase transi

tions, spontaneous polarization, permittivity, etc.—over a range of temperatures in 

all the four phases of BaTiOs.

Finding the minimum of the relative errors between the analytical and exper-
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Figure B .l. Spontaneous polarization vs. temperature.
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Figure B.2. Relative permittivity coefficients vs. temperature at zero 
electric field.
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imental values, subjected to functional constraints, is a semi-infinite optimization 

problem, which refers to optimization problems having a finite number of design 

parameters and an infinity of constraints, which are in general nonlinear equality 

and/or inequality constraints. A functional constraint, which depends on a contin

uous independent parameter in addition to a finite set of design parameters, can 

be thought of as equivalent to an infinity of constraints. Let i g R "  represent the 

design parameters, whose number (n) is finite; / :R n —► R the objective (or cost) 

function; ^ : R n x R - » R ,  for i =  1 , • • •, I, the I functional inequality constraints; and 

hji Rn —► R, for j  =  1, • • • ,m , the m  equality constraints. A functional constraint 

<7i(x, y) < 0 for all y  6  Yi C R, where Yi is a compact interval in R, can be thought 

of as equivalent to an infinite number of constraints. The following statement

(B .l)

in which the functions / ,  <7,-, for i =  1 , • • -, I, and hj, for j  =  1 , • • -, m  are assumed to 

be locally Lipschitz continuous, is a semi-infinite optimization problem. Here, / ,  5 ,, 

hj axe functions of the coefficients of the elastic Gibbs function. These coefficients 

are assumed in the present work to be polynomial functions of the temperature y 

and the design parameters x. The objective function / (x )  defined to be the error 

between the analytical and the experimental values in the permittivity coefficients 

and in spontaneous polarization. The functional-inequality constraints enforce the 

appropriate crystal phase in each temperature region. The equality constraints 

enforce the first-order phase transitions at the transition temperatures. Note that 

due to the presence of the equality constraints in B.l, there are several difficulties 

encountered in its solution, which are discussed in Srinivas and Vu-Quoc [1995].

In Vu-Quoc and Srinivas [1994], we demonstrate the success of the semi-infinite

min { /(x )  | gi(x , y) < 0 Vy G Yi C R , for i =  1 , ■ • •, Z 
xeR

hj(x) =  0 , for j  =  l , - - - , m,  } ,
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optimization based methodology by obtaining a simple phenomenological model for 

the cubic and tetragonal phases of B aTi03. In Vu-Quoc and Srinivas [1996], we 

have obtained, for the first time, a model for all the four phases of BaTi03. A 

substantial difference, of over 500% is observed between the overall relative errors 

from the models obtained using the existing methods and that obtained using the 

proposed methodology. Figures B .l and B.2 show the remarkable agreement of the 

optimal model (represented by solid and dashed lines) with the experimental data 

(represented by £+ ’, ‘o’, and '*’) over all the four phases.

The proposed methodology offers an approach to “design” general phenomeno

logical models for ferroelectrics with a virtually unlimited flexibility for generaliza

tion not available hitherto. The optimal model obtained is simple, i.e., uses only a 

few design parameters by assuming the coefficients of the elastic Gibbs function to 

be either constants or linear functions of temperature. Unlike the ad methods used 

in the past, the proposed methodology does not restrict one to such a simple model. 

Furthermore, despite the disagreement on the experimental values of B aT i0 3 crys

tals sometimes found in the literature, we emphasize, however, that the proposed 

methodology to develop phenomenological models for BaTi03 crystals in partic

ular, and for ferroelectric crystals in general, based on semi-infinite optimization 

approach can be applied to any set of experimental values. Also it is noted that 

the proposed methodology can be generalized for application to tungsten bronze 

ferroelectrics Cross and Neurgaonkar [1992], and to ferroelastic materials such as 

KH3(Se04), Te0 2 , V3Si, SrTi03, and to ferroelectric-ferroelastic materials such as 

KH2PO4 and B aT i0 3 (see Toledano, Fejer and Auld [1983]).
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